Пример #1
0
    def plot_particle_proposer(self, sess, batch, proposed_particles, task):

        # define the inputs and train/run the model
        input_dict = {
            **{self.placeholders[key]: batch[key]
               for key in 'osa'},
            **{
                self.placeholders['num_particles']: 100
            },
        }

        s_samples = sess.run(proposed_particles, input_dict)

        plt.figure('Particle Proposer')
        plt.gca().clear()
        plot_maze(task)

        for i in range(min(len(s_samples), 10)):
            color = np.random.uniform(0.0, 1.0, 3)
            plt.quiver(s_samples[i, :, 0],
                       s_samples[i, :, 1],
                       np.cos(s_samples[i, :, 2]),
                       np.sin(s_samples[i, :, 2]),
                       color=color,
                       width=0.001,
                       scale=100)
            plt.quiver(batch['s'][i, 0, 0],
                       batch['s'][i, 0, 1],
                       np.cos(batch['s'][i, 0, 2]),
                       np.sin(batch['s'][i, 0, 2]),
                       color=color,
                       scale=50,
                       width=0.003)

        plt.pause(0.01)
def plot_proposer(session, method, statistics, batch, task, num_examples,
                  variant):

    num_particles = 1000
    proposer_out = method.propose_particles(method.encodings[0, :],
                                            num_particles,
                                            statistics['state_mins'],
                                            statistics['state_maxs'])

    # define the inputs and train/run the model
    input_dict = {
        **{method.placeholders[key]: batch[key]
           for key in 'osa'},
    }
    particles = session.run(proposer_out, input_dict)

    for i in range(num_examples):
        fig = plt.figure(figsize=(2.4, 1.29 / 0.9),
                         num="%s %s proposer" % (variant, i))
        # plt.gca().clear()
        plot_maze(task, margin=5, linewidth=0.5)

        quiv = plt.quiver(particles[i, :, 0],
                          particles[i, :, 1],
                          np.cos(particles[i, :, 2]),
                          np.sin(particles[i, :, 2]),
                          np.ones([num_particles]),
                          cmap='viridis_r',
                          clim=[0, 2],
                          alpha=1.0,
                          **quiv_kwargs)

        plt.quiver([batch['s'][0, i, 0]], [batch['s'][0, i, 1]],
                   np.cos([batch['s'][0, i, 2]]),
                   np.sin([batch['s'][0, i, 2]]),
                   color='red',
                   **quiv_kwargs)  # width=0.01, scale=100
        plt.plot([batch['s'][0, i, 0]], [batch['s'][0, i, 1]], 'or',
                 **marker_kwargs)

        plt.gca().axis('off')
        plt.subplots_adjust(left=0.0,
                            bottom=0.05,
                            right=1.0,
                            top=0.95,
                            wspace=0.0,
                            hspace=0.00)

        # plt.subplots_adjust(left=0.0, bottom=0.0, right=1.0, top=1.0, wspace=0.001, hspace=0.1)
        plt.savefig('../plots/models/prop{}.pdf'.format(i),
                    transparent=True,
                    dpi=600,
                    frameon=False,
                    facecolor='w',
                    pad_inches=0.01)
Пример #3
0
    def plot_motion_model(self, sess, batch, motion_samples, task):

        # define the inputs and train/run the model
        input_dict = {
            **{self.placeholders[key]: batch[key]
               for key in 'osa'},
            **{
                self.placeholders['num_particles']: 100
            },
        }

        s_motion_samples = sess.run(motion_samples, input_dict)

        plt.figure('Motion Model')
        plt.gca().clear()
        plot_maze(task)
        for i in range(min(len(s_motion_samples), 10)):
            plt.quiver(s_motion_samples[i, :, 0],
                       s_motion_samples[i, :, 1],
                       np.cos(s_motion_samples[i, :, 2]),
                       np.sin(s_motion_samples[i, :, 2]),
                       color='blue',
                       width=0.001,
                       scale=100)
            plt.quiver(batch['s'][i, 0, 0],
                       batch['s'][i, 0, 1],
                       np.cos(batch['s'][i, 0, 2]),
                       np.sin(batch['s'][i, 0, 2]),
                       color='black',
                       scale=50,
                       width=0.003)
            plt.quiver(batch['s'][i, 1, 0],
                       batch['s'][i, 1, 1],
                       np.cos(batch['s'][i, 1, 2]),
                       np.sin(batch['s'][i, 1, 2]),
                       color='red',
                       scale=50,
                       width=0.003)

        plt.gca().set_aspect('equal')
        plt.pause(0.01)
Пример #4
0
    # np.random.seed(11)
    # nav02: i=108
    i = 108
    # for i in range(100, 120):
    np.random.seed(i)
    dat = shuffle_data(data['train'])
    dat = reduce_data(dat, 1)
    dat = noisyfy_data(dat)

    plot_trajectory(dat,
                    figure_name=None,
                    emphasize=0,
                    mincolor=0.0,
                    linewidth=0.5)
    plot_maze(task)
    # plot_trajectories(data['val'], figure_name='2', emphasize=None, mincolor=0.0, linewidth=0.5)
    # plot_maze(task)
    plt.tick_params(top='off',
                    bottom='off',
                    left='off',
                    right='off',
                    labelleft='off',
                    labelbottom='off')

    plt.tight_layout()
    # plt.savefig("../plots/"+task +".png",
    #            bbox_inches='tight',
    #            transparent=False,
    #            pad_inches=0,
    #            dpi=200)
Пример #5
0
    def plot_particle_filter(self, sess, batch, particle_list,
                             particle_probs_list, num_particles,
                             state_step_sizes, task):

        num_particles = 1000
        head_scale = 1.5
        quiv_kwargs = {
            'scale_units': 'xy',
            'scale': 1. / 40.,
            'width': 0.003,
            'headlength': 5 * head_scale,
            'headwidth': 3 * head_scale,
            'headaxislength': 4.5 * head_scale
        }
        marker_kwargs = {
            'markersize': 4.5,
            'markerfacecolor': 'None',
            'markeredgewidth': 0.5
        }

        color_list = plt.cm.tab10(np.linspace(0, 1, 10))
        colors = {
            'lstm': color_list[0],
            'pf_e2e': color_list[1],
            'pf_ind_e2e': color_list[2],
            'pf_ind': color_list[3],
            'ff': color_list[4],
            'odom': color_list[4]
        }

        pred, s_particle_list, s_particle_probs_list = self.predict(
            sess, batch, num_particles, return_particles=True)

        num_steps = 20  # s_particle_list.shape[1]

        for s in range(1):

            plt.figure("example {}".format(s), figsize=[12, 5.15])
            plt.gca().clear()

            for i in range(num_steps):
                ax = plt.subplot(4, 5, i + 1, frameon=False)
                plt.gca().clear()

                plot_maze(task, margin=5, linewidth=0.5)

                if i < num_steps - 1:
                    ax.quiver(s_particle_list[s, i, :, 0],
                              s_particle_list[s, i, :, 1],
                              np.cos(s_particle_list[s, i, :, 2]),
                              np.sin(s_particle_list[s, i, :, 2]),
                              s_particle_probs_list[s, i, :],
                              cmap='viridis_r',
                              clim=[.0, 2.0 / num_particles],
                              alpha=1.0,
                              **quiv_kwargs)

                    current_state = batch['s'][s, i, :]
                    plt.quiver(current_state[0],
                               current_state[1],
                               np.cos(current_state[2]),
                               np.sin(current_state[2]),
                               color="red",
                               **quiv_kwargs)

                    plt.plot(current_state[0], current_state[1], 'or',
                             **marker_kwargs)
                else:

                    ax.plot(batch['s'][s, :num_steps, 0],
                            batch['s'][s, :num_steps, 1],
                            '-',
                            linewidth=0.6,
                            color='red')
                    ax.plot(pred[s, :num_steps, 0],
                            pred[s, :num_steps, 1],
                            '-',
                            linewidth=0.6,
                            color=colors['pf_ind_e2e'])

                    ax.plot(batch['s'][s, :1, 0],
                            batch['s'][s, :1, 1],
                            '.',
                            linewidth=0.6,
                            color='red',
                            markersize=3)
                    ax.plot(pred[s, :1, 0],
                            pred[s, :1, 1],
                            '.',
                            linewidth=0.6,
                            markersize=3,
                            color=colors['pf_ind_e2e'])

                plt.subplots_adjust(left=0.0,
                                    bottom=0.0,
                                    right=1.0,
                                    top=1.0,
                                    wspace=0.001,
                                    hspace=0.1)
                plt.gca().set_aspect('equal')
                plt.xticks([])
                plt.yticks([])

        show_pause(pause=0.01)
def plot_prediction(pred1, pred2, statistics, batch, task, num_examples,
                    variant):
    color_list = plt.cm.tab10(np.linspace(0, 1, 10))
    colors = {
        'lstm': color_list[0],
        'pf_e2e': color_list[1],
        'pf_ind_e2e': color_list[2],
        'pf_ind': color_list[3],
        'ff': color_list[4],
        'odom': color_list[4]
    }

    num_steps = 50
    init_steps = 20

    for s in range(num_examples):

        fig = plt.figure(figsize=(2.4, 1.29),
                         num="%s prediction %s" % (variant, s))

        # plt.figure("example {}, vartiant: {}".format(s, variant), figsize=[12, 5.15])
        plt.gca().clear()
        plot_maze(task, margin=5, linewidth=0.5)

        plt.plot(batch['s'][s, :num_steps, 0],
                 batch['s'][s, :num_steps, 1],
                 '-',
                 linewidth=0.3,
                 color='gray')
        plt.plot(pred1[s, :init_steps, 0],
                 pred1[s, :init_steps, 1],
                 '--',
                 linewidth=0.3,
                 color=colors['pf_ind_e2e'])
        plt.plot(pred1[s, init_steps - 1:num_steps, 0],
                 pred1[s, init_steps - 1:num_steps, 1],
                 '-',
                 linewidth=0.3,
                 color=colors['pf_ind_e2e'])
        plt.plot(pred2[s, :init_steps, 0],
                 pred2[s, :init_steps, 1],
                 '--',
                 linewidth=0.3,
                 color=colors['lstm'])
        plt.plot(pred2[s, init_steps - 1:num_steps, 0],
                 pred2[s, init_steps - 1:num_steps, 1],
                 '-',
                 color=colors['lstm'],
                 linewidth=0.3)

        # for i in range(init_steps, num_steps):
        #
        #     p = pred1[s, i, :]
        #     plt.quiver(p[0], p[1], np.cos(p[2]),
        #                np.sin(p[2]), color=colors['pf_ind_e2e'], **quiv_kwargs)
        #     p = pred2[s, i, :]
        #     plt.quiver(p[0], p[1], np.cos(p[2]),
        #                np.sin(p[2]), color=colors['lstm'], **quiv_kwargs)
        #     # plt.plot(p[0], p[1], 'og', **marker_kwargs)
        #
        #     current_state = batch['s'][s, i, :]
        #     plt.quiver(current_state[0], current_state[1], np.cos(current_state[2]),
        #                np.sin(current_state[2]), color="black", **quiv_kwargs)
        #     # plt.plot(current_state[0], current_state[1], 'or', **marker_kwargs)

        plt.gca().set_aspect('equal')
        plt.xticks([])
        plt.yticks([])
        plt.subplots_adjust(left=0.0,
                            bottom=0.0,
                            right=1.0,
                            top=1.0,
                            wspace=0.001,
                            hspace=0.1)
        plt.savefig('../plots/models/pred{}.pdf'.format(s),
                    transparent=True,
                    dpi=600,
                    frameon=False,
                    facecolor='w',
                    pad_inches=0.01)
def plot_measurement_model(session, method, statistics, batch, task,
                           num_examples, variant):

    batch_size = len(batch['o'])

    x = np.linspace(100.0 / 4, 1000.0 - 100.0 / 4, 20)
    y = np.linspace(100.0 / 4, 500.0 - 100.0 / 4, 10)
    theta = np.linspace(-np.pi, np.pi, 12 + 1)[1:]
    g = np.meshgrid(x, y, theta)

    poses = np.vstack([np.ravel(x) for x in g]).transpose([1, 0])
    test_poses = tf.tile(
        tf.constant(poses, dtype='float32')[None, :, :], [batch_size, 1, 1])
    measurement_model_out = method.measurement_update(method.encodings[0, :],
                                                      test_poses,
                                                      statistics['means'],
                                                      statistics['stds'])

    # define the inputs and train/run the model
    input_dict = {
        **{method.placeholders[key]: batch[key]
           for key in 'osa'},
    }

    obs_likelihood = session.run(measurement_model_out, input_dict)
    print(obs_likelihood.shape)

    for i in range(num_examples):
        # plt.figure("%s likelihood" % i)
        fig, (ax,
              cax) = plt.subplots(1,
                                  2,
                                  figsize=(2.4 / 0.83 / 0.95 / 0.97,
                                           1.29 / 0.9),
                                  gridspec_kw={"width_ratios": [0.97, 0.03]},
                                  num="%s %s likelihood" % (variant, i))
        # plt.gca().clear()
        plot_maze(task, margin=5, linewidth=0.5, ax=ax)

        idx = obs_likelihood[i, :] > 1 * np.mean(obs_likelihood[i, :])
        # idx = obs_likelihood[i, :] > 0 * np.mean(obs_likelihood[i, :])
        max = np.max(obs_likelihood[i, :])

        # ax.scatter([poses[:, 0]], [poses[:, 1]], s=[0.001], c=[(0.8, 0.8, 0.8)], marker='.')

        quiv = ax.quiver(poses[idx, 0] + 0 * np.cos(poses[idx, 2]),
                         poses[idx, 1] + 0 * np.sin(poses[idx, 2]),
                         np.cos(poses[idx, 2]),
                         np.sin(poses[idx, 2]),
                         obs_likelihood[i, idx],
                         cmap='viridis_r',
                         clim=[0.0, max],
                         **quiv_kwargs)

        ax.plot([batch['s'][0, i, 0]], [batch['s'][0, i, 1]], 'or',
                **marker_kwargs)

        ax.quiver([batch['s'][0, i, 0]], [batch['s'][0, i, 1]],
                  np.cos([batch['s'][0, i, 2]]),
                  np.sin([batch['s'][0, i, 2]]),
                  color='red',
                  **quiv_kwargs)
        ax.axis('off')
        fig.colorbar(quiv,
                     cax=cax,
                     orientation="vertical",
                     label='Obs. likelihood',
                     ticks=[0.0, 0.2, 0.4, 0.6, 0.8, 1.0])
        plt.subplots_adjust(left=0.0,
                            bottom=0.05,
                            right=0.83,
                            top=0.95,
                            wspace=0.05,
                            hspace=0.00)
        plt.savefig('../plots/models/measurement_model{}.pdf'.format(i),
                    transparent=True,
                    dpi=600,
                    frameon=False,
                    facecolor='w',
                    pad_inches=0.01)
def plot_particle_filter(session, method, statistics, batch, task,
                         num_examples, num_particles, variant):
    color_list = plt.cm.tab10(np.linspace(0, 1, 10))
    colors = {
        'lstm': color_list[0],
        'pf_e2e': color_list[1],
        'pf_ind_e2e': color_list[2],
        'pf_ind': color_list[3],
        'ff': color_list[4],
        'odom': color_list[4]
    }

    pred, s_particle_list, s_particle_probs_list = method.predict(
        session, batch, num_particles, return_particles=True)

    num_steps = 20  # s_particle_list.shape[1]

    for s in range(num_examples):

        plt.figure("example {}, vartiant: {}".format(s, variant),
                   figsize=[12, 5.15])
        plt.gca().clear()

        for i in range(num_steps):
            ax = plt.subplot(4, 5, i + 1, frameon=False)
            plt.gca().clear()

            plot_maze(task, margin=5, linewidth=0.5)

            if i < num_steps - 1:
                ax.quiver(s_particle_list[s, i, :, 0],
                          s_particle_list[s, i, :, 1],
                          np.cos(s_particle_list[s, i, :, 2]),
                          np.sin(s_particle_list[s, i, :, 2]),
                          s_particle_probs_list[s, i, :],
                          cmap='viridis_r',
                          clim=[.0, 2.0 / num_particles],
                          alpha=1.0,
                          **quiv_kwargs)

                current_state = batch['s'][s, i, :]
                plt.quiver(current_state[0],
                           current_state[1],
                           np.cos(current_state[2]),
                           np.sin(current_state[2]),
                           color="red",
                           **quiv_kwargs)

                plt.plot(current_state[0], current_state[1], 'or',
                         **marker_kwargs)
            else:

                ax.plot(batch['s'][s, :num_steps, 0],
                        batch['s'][s, :num_steps, 1],
                        '-',
                        linewidth=0.6,
                        color='red')
                ax.plot(pred[s, :num_steps, 0],
                        pred[s, :num_steps, 1],
                        '-',
                        linewidth=0.6,
                        color=colors['pf_ind_e2e'])

                ax.plot(batch['s'][s, :1, 0],
                        batch['s'][s, :1, 1],
                        '.',
                        linewidth=0.6,
                        color='red',
                        markersize=3)
                ax.plot(pred[s, :1, 0],
                        pred[s, :1, 1],
                        '.',
                        linewidth=0.6,
                        markersize=3,
                        color=colors['pf_ind_e2e'])

            plt.subplots_adjust(left=0.0,
                                bottom=0.0,
                                right=1.0,
                                top=1.0,
                                wspace=0.001,
                                hspace=0.1)
            plt.gca().set_aspect('equal')
            plt.xticks([])
            plt.yticks([])

        plt.savefig('../plots/models/pf{}.pdf'.format(s),
                    transparent=True,
                    dpi=600,
                    frameon=False,
                    facecolor='w',
                    pad_inches=0.01)

        plt.figure('colorbar', (12, 0.6))
        a = np.array([[0, 2.0 / num_particles]])
        img = plt.imshow(a, cmap="viridis_r")
        plt.gca().set_visible(False)
        cax = plt.axes([0.25, 0.75, 0.50, 0.2])
        plt.colorbar(orientation="horizontal",
                     cax=cax,
                     label='Particle weight',
                     ticks=[0, 0.001, 0.002])

        plt.savefig('../plots/models/colorbar.pdf'.format(s),
                    transparent=True,
                    dpi=600,
                    frameon=False,
                    facecolor='w',
                    pad_inches=0.01)
def plot_motion_model(session, method, statistics, batch, task, num_examples,
                      num_particles, variant):

    motion_samples = method.motion_update(
        method.placeholders['a'][:, 1],
        tf.tile(method.placeholders['s'][:, :1],
                [1, num_particles, 1]), statistics['means'],
        statistics['stds'], statistics['state_step_sizes'])

    # define the inputs and train/run the model
    input_dict = {
        **{method.placeholders[key]: batch[key]
           for key in 'osa'},
    }
    particles = session.run(motion_samples, input_dict)

    fig = plt.figure(figsize=(2.4, 1.29), num="%s motion model" % (variant))
    # plt.gca().clear()
    plot_maze(task, margin=5, linewidth=0.5)

    for i in range(num_examples):

        plt.quiver(particles[i, :, 0],
                   particles[i, :, 1],
                   np.cos(particles[i, :, 2]),
                   np.sin(particles[i, :, 2]),
                   np.ones([num_particles]),
                   cmap='viridis_r',
                   **quiv_kwargs,
                   alpha=1.0,
                   clim=[0, 2])  # width=0.01, scale=100

        plt.quiver(
            [batch['s'][i, 0, 0]],
            [batch['s'][i, 0, 1]],
            np.cos([batch['s'][i, 0, 2]]),
            np.sin([batch['s'][i, 0, 2]]),
            color='black',
            **quiv_kwargs,
        )  # width=0.01, scale=100

        plt.plot(batch['s'][i, :2, 0],
                 batch['s'][i, :2, 1],
                 '--',
                 color='black',
                 linewidth=0.3)
        plt.plot(batch['s'][i, :1, 0],
                 batch['s'][i, :1, 1],
                 'o',
                 color='black',
                 linewidth=0.3,
                 **marker_kwargs)
        plt.plot(batch['s'][i, 1:2, 0],
                 batch['s'][i, 1:2, 1],
                 'o',
                 color='red',
                 linewidth=0.3,
                 **marker_kwargs)

        plt.quiver([batch['s'][i, 1, 0]], [batch['s'][i, 1, 1]],
                   np.cos([batch['s'][i, 1, 2]]),
                   np.sin([batch['s'][i, 1, 2]]),
                   color='red',
                   **quiv_kwargs)  # width=0.01, scale=100

    plt.gca().axis('off')

    plt.subplots_adjust(left=0.0,
                        bottom=0.0,
                        right=1.0,
                        top=1.0,
                        wspace=0.001,
                        hspace=0.1)
    plt.savefig('../plots/models/motion_model{}.pdf'.format(i),
                transparent=True,
                dpi=600,
                frameon=False,
                facecolor='w',
                pad_inches=0.01)