from utils.prepare_data import get_training_data from utils.prepare_plots import plot_results from core.denoiser.build_simple_encoderdecoder_w_denoiser_model import simple_encoderdecoder_w_denoiser if __name__ == "__main__": profile_pngs_objs, midcurve_pngs_objs = get_training_data() endec = simple_encoderdecoder_w_denoiser() original_imgs, decoded_imgs = endec.simple_encoderdecoder_w_denoiser( profile_pngs_objs, midcurve_pngs_objs) plot_results(original_imgs, decoded_imgs)
from utils.prepare_data import get_training_data from utils.prepare_plots import plot_results from simpleencoderdecoder.build_simple_encoderdecoder_model import simple_encoderdecoder import random import numpy as np if __name__ == "__main__": profile_gray_objs, midcurve_gray_objs = get_training_data() test_gray_images = random.sample(profile_gray_objs, 5) profile_gray_objs = np.asarray(profile_gray_objs) / 255. midcurve_gray_objs = np.asarray(midcurve_gray_objs) / 255. test_gray_images = np.asarray(test_gray_images) / 255. retrain_model = True endec = simple_encoderdecoder() endec.train(profile_gray_objs, midcurve_gray_objs, retrain_model) original_profile_imgs, predicted_midcurve_imgs = endec.predict( test_gray_images) plot_results(original_profile_imgs, predicted_midcurve_imgs)
from utils.prepare_data import get_training_data from utils.prepare_plots import plot_results from denoiserencoderdecoder.build_denoiser_encoderdecoder_model import denoiser_encoderdecoder from simpleencoderdecoder.build_simple_encoderdecoder_model import simple_encoderdecoder from random import random if __name__ == "__main__": profile_gray_objs, midcurve_gray_objs = get_training_data() endec = simple_encoderdecoder() endec.train(profile_gray_objs, midcurve_gray_objs) original_profile_images, noisy_predicted_midcurve_images = endec.predict( profile_gray_objs) plot_results(original_profile_images[:5], noisy_predicted_midcurve_images[:5]) denoiser = denoiser_encoderdecoder() retrain_model = True denoiser.train(noisy_predicted_midcurve_images, midcurve_gray_objs, retrain_model) sample_noisy_midcurve_images = random.sample( noisy_predicted_midcurve_images, 5) original_noisy_midcurve_images, clean_predicted_midcurve_images = denoiser.predict( sample_noisy_midcurve_images) plot_results(original_noisy_midcurve_images, clean_predicted_midcurve_images)