def main():

    try:

        #capture the command line arguments from the interface script.
        args = get_args()

        #parse the configuration parameters for the cnn model
        config = ConfigurationParameters(args)

    except:
        print('Missing or invalid arguments !')
        exit(0)

    #load the dataset from the library and print the details
    dataset = LoadDataCifar10(config, dataset)

    #construct , build, compile and train the cnn model
    model = CNNCifar10Model(config, dataset)

    #save the model to the disk
    #model.save_model()

    #generate graphs classfication report, confusion matrix
    report = Report(config, model)
    report.plot()
    report.model_classification_report()
    report.plot_confusion_matrix()
Пример #2
0
def main():

    try:

        # Capture the command line arguments from the interface script.
        args = get_args()

        # Parse the configuration parameters for the ConvNet Model.
        config = ConfigurationParameters(args)

    except:
        print('Missing or invalid arguments !')
        exit(0)

    # Load the dataset from the library, process and print its details.
    dataset = FashionMnistLoader(config)

    # Test the loaded dataset by displaying the first image in both training and testing dataset.
    dataset.display_data_element('train_data', 1)
    dataset.display_data_element('test_data', 1)

    # Construct, compile, train and evaluate the ConvNet Model.
    model = FashionMnistModel(config, dataset)

    # Save the ConvNet model to the disk.
    # model.save_model()

    # Generate graphs, classification report, confusion matrix.
    report = Report(config, model)
    report.plot()
    report.model_classification_report()
    report.plot_confusion_matrix()
def main():

    try:

        args = get_args()

        #Parse the configuration ConfigurationParameters
        config = ConfigurationParameters(args)

    except:

        print('Missing or invalid arguments !')
        exit(0)

    dataset = LoadDataCifar10(config)

    g_search = GridSearchBase(config,dataset)

    #create a Scikit learn wrapper
    g_search.model_wrapper = KerasClassifier(build_fn = g_search.create_model, verbose=0)

    #define the grid search parameters
    batch_size = [1,2]
    epochs = [30,50]
    g_search.param_grid = dict(batch_size = batch_size,
                                   epochs = epochs)

    g_search.grid = GridSearchCV(estimator=g_search.model_wrapper,\\
                                     param_grid = g_search.param_grid,\\
                                     n_jobs = g_search.n_jobs)

    g_search.grid_result = g_search.grid.fit(dataset.train_data,\\
                                                 dataset.train_label_one_hot)

    #summarize results
    print("best :%f using %s" %(g_search.grid_result.best_score_,\\
                                    g_search.grid_result.best_params_))
    means = g_search.grid_result.cv_results_['mean_test_score']
    stds = g_search.grid_result.cv_results_['std_test_score']
    params = g_search.grid_result.cv_results_['params']

    for mean,stdev,param in zip(means, stds, params):
        print("%f (%f) with: %r" %(mean, stdev, param))