def train_with_feed(step): ave_cost = 0.0 for it in six.moves.xrange(batch_num // dev_count): feed_list = [] for dev in six.moves.xrange(dev_count): index = it * dev_count + dev batch_data = reader.make_one_batch_input(train_batches, index) feed_dict = dict(zip(dam.get_feed_names(), batch_data)) feed_list.append(feed_dict) cost = train_exe.run(feed=feed_list, fetch_list=[loss.name]) ave_cost += np.array(cost[0]).mean() step = step + 1 if step % print_step == 0: print("processed: [" + str(step * dev_count * 1.0 / batch_num) + "] ave loss: [" + str(ave_cost / print_step) + "]") ave_cost = 0.0 if (args.save_path is not None) and (step % save_step == 0): save_path = os.path.join(args.save_path, "step_" + str(step)) print("Save model at step %d ... " % step) print(time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(time.time()))) fluid.io.save_persistables(exe, save_path, train_program) score_path = os.path.join(args.save_path, 'score.' + str(step)) test_with_feed(test_exe, test_program, dam.get_feed_names(), [logits.name], score_path, val_batches, val_batch_num, dev_count) result_file_path = os.path.join(args.save_path, 'result.' + str(step)) evaluate(score_path, result_file_path) return step, np.array(cost[0]).mean()
def test_with_feed(exe, program, feed_names, fetch_list, score_path, batches, batch_num, dev_count): score_file = open(score_path, 'w') for it in six.moves.xrange(batch_num // dev_count): feed_list = [] for dev in six.moves.xrange(dev_count): val_index = it * dev_count + dev batch_data = reader.make_one_batch_input(batches, val_index) feed_dict = dict(zip(feed_names, batch_data)) feed_list.append(feed_dict) predicts = exe.run(feed=feed_list, fetch_list=fetch_list) scores = np.array(predicts[0]) for dev in six.moves.xrange(dev_count): val_index = it * dev_count + dev for i in six.moves.xrange(args.batch_size): score_file.write( str(scores[args.batch_size * dev + i][0]) + '\t' + str( batches["label"][val_index][i]) + '\n') score_file.close()
def data_provider(): for index in six.moves.xrange(batch_num): yield reader.make_one_batch_input(train_batches, index)
def test(args): if not os.path.exists(args.save_path): mkdir(args.save_path) if not os.path.exists(args.model_path): raise ValueError("Invalid model init path %s" % args.model_path) # data data_config data_conf = { "batch_size": args.batch_size, "max_turn_num": args.max_turn_num, "max_turn_len": args.max_turn_len, "_EOS_": args._EOS_, } dam = Net(args.max_turn_num, args.max_turn_len, args.vocab_size, args.emb_size, args.stack_num, args.channel1_num, args.channel2_num) dam.create_data_layers() loss, logits = dam.create_network() loss.persistable = True # gradient clipping fluid.clip.set_gradient_clip(clip=fluid.clip.GradientClipByValue( max=1.0, min=-1.0)) test_program = fluid.default_main_program().clone(for_test=True) optimizer = fluid.optimizer.Adam( learning_rate=fluid.layers.exponential_decay( learning_rate=args.learning_rate, decay_steps=400, decay_rate=0.9, staircase=True)) optimizer.minimize(loss) # The fethced loss is wrong when mem opt is enabled fluid.memory_optimize(fluid.default_main_program()) if args.use_cuda: place = fluid.CUDAPlace(0) dev_count = fluid.core.get_cuda_device_count() else: place = fluid.CPUPlace() dev_count = multiprocessing.cpu_count() exe = fluid.Executor(place) exe.run(fluid.default_startup_program()) fluid.io.load_persistables(exe, args.model_path) test_exe = fluid.ParallelExecutor( use_cuda=args.use_cuda, main_program=test_program) print("start loading data ...") with open(args.data_path, 'rb') as f: if six.PY2: train_data, val_data, test_data = pickle.load(f) else: train_data, val_data, test_data = pickle.load(f, encoding="bytes") print("finish loading data ...") if args.ext_eval: import utils.douban_evaluation as eva else: import utils.evaluation as eva test_batches = reader.build_batches(test_data, data_conf) test_batch_num = len(test_batches["response"]) print("test batch num: %d" % test_batch_num) print("begin inference ...") print(time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(time.time()))) score_path = os.path.join(args.save_path, 'score.txt') score_file = open(score_path, 'w') for it in six.moves.xrange(test_batch_num // dev_count): feed_list = [] for dev in six.moves.xrange(dev_count): index = it * dev_count + dev batch_data = reader.make_one_batch_input(test_batches, index) feed_dict = dict(zip(dam.get_feed_names(), batch_data)) feed_list.append(feed_dict) predicts = test_exe.run(feed=feed_list, fetch_list=[logits.name]) scores = np.array(predicts[0]) print("step = %d" % it) for dev in six.moves.xrange(dev_count): index = it * dev_count + dev for i in six.moves.xrange(args.batch_size): score_file.write( str(scores[args.batch_size * dev + i][0]) + '\t' + str( test_batches["label"][index][i]) + '\n') score_file.close() #write evaluation result result = eva.evaluate(score_path) result_file_path = os.path.join(args.save_path, 'result.txt') with open(result_file_path, 'w') as out_file: for p_at in result: out_file.write(str(p_at) + '\n') print('finish test') print(time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(time.time())))