if __name__ == '__main__': config1 = config() # make env args = xworld_args.parser().parse_args() args.visible_radius_unit_side = config1.visible_radius_unit_side args.visible_radius_unit_front = config1.visible_radius_unit_front args.ego_centric = config1.ego_centric args.map_config = config1.map_config_file args.goal_id = 0 args.israndom_goal = False env = xworld_navi_goal_obs_crop.XWorldNaviGoal(args) # exploration strategy exp_schedule = LinearExploration(env.agent.num_actions, config1.eps_begin, config1.eps_end, config1.eps_nsteps) # learning rate schedule lr_schedule = LinearSchedule(config1.lr_begin, config1.lr_end, config1.lr_nsteps) # train model g1 = tf.Graph() model = DRQN(env, config1, g1) g2 = tf.Graph() model2 = DRQN(env, config1, g2) #with g1.as_default(): # params = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope='q') #print(params)
self.evaluate() if __name__ == '__main__': # make env args = xworld_args.parser().parse_args() args.visible_radius_unit_side = config.visible_radius_unit_side args.visible_radius_unit_front = config.visible_radius_unit_front args.ego_centric = config.ego_centric args.map_config = config.map_config_file env = xworld_navi_goal.XWorldNaviGoal(args) env.teacher.israndom_goal = False env.teacher.goal_id = 0 # exploration strategy exp_schedule = LinearExploration(env, config.eps_begin, config.eps_end, config.eps_nsteps) # learning rate schedule lr_schedule = LinearSchedule(config.lr_begin, config.lr_end, config.lr_nsteps) # train model model = DRQN(env, config) shutil.copyfile('./configs/drqn_xworld.py', config.output_path+'config.py') shutil.copy(os.path.realpath(__file__), config.output_path) shutil.copy(config.map_config_file, config.output_path) if config.deploy_only: model.deploy() else: model.run(exp_schedule, lr_schedule)
args = xworld_args.parser().parse_args() args.visible_radius_unit_side = config_i.visible_radius_unit_side args.visible_radius_unit_front = config_i.visible_radius_unit_front args.ego_centric = config_i.ego_centric args.map_config = config_i.map_config_file args.goal_id = 0 args.israndom_goal = False env_i = xworld_navi_goal_gt_dnc.XWorldNaviGoal(args) # load model g_a = tf.Graph() model_a = DRQN(env_a, config_a, g_a) model_a.initialize() # exploration strategy exp_schedule = LinearExploration(2, config_i.eps_begin, config_i.eps_end, config_i.eps_nsteps) # learning rate schedule lr_schedule = LinearSchedule(config_i.lr_begin, config_i.lr_end, config_i.lr_nsteps) # train model g_i = tf.Graph() model_i = DRQN_planner(env_i, config_i, g_i) ''' model_i.initialize() nldms = [] nins = 2 nway = 5 ndigits = 2