def test_get_item_by_id(self): firebase = get_storage()._firebase for resource in self._resources: data = firebase.get('/data', None).get(resource) not_none_element_id = 0 for element in data: if not (element is None): not_none_element_id = element.get('id') break result = get_storage().get_item_by_id(resource, not_none_element_id) self.assertIsNotNone(result.get('id'))
def test_connection(self): firebase = get_storage()._firebase versions = firebase.get('/versions', None) data = firebase.get('/data', None) for resource in self._resources: self.assertIsNotNone(versions.get(resource)) self.assertIsNotNone(data.get(resource))
def __init__(self, resource: str): super().__init__("sync_cbc_%s" % (resource)) self._ps = get_ps() self._ss = get_storage() self._resource = resource self._iso_lang = get_config()['prestashop']['mainLanguage'] self._current_lang = self.get_language(self._iso_lang)
def test_get_items_older_version(self): for resource in self._resources: results = get_storage().get_items_older_version(resource) latest_version = get_storage().latest_version(resource) for result in results: self.assertNotEqual(result.get('version'), latest_version)
def test_get_items(self): for resource in self._resources: results = get_storage().get_items(resource) self.assertTrue(type(results), list) for result in results: self.assertIsNotNone(result)
def test_latest_version(self): for resource in self._resources: self.assertEqual(type(get_storage().latest_version(resource)), int)
error_list = cross_val_score(model, X_train, y_train, cv=3, scoring='neg_mean_squared_error') return error_list.mean() # #### チューニング開始 study = optuna.create_study(direction='maximize', pruner=optuna.pruners.MedianPruner(), study_name='sample', storage=get_storage(), load_if_exists=True) study.optimize(objective, n_trials=50) # + # study = optuna.load_study(study_name='sample', storage=get_storage()) # - # #### デフォルトパラメータとチューニングしたパラメータの比較 default_model = RandomForestRegressor(random_state=1234) default_model.fit(X_train, y_train) default_predict = default_model.predict(X_test) default_score = mean_squared_error(y_test, default_predict) # +