Пример #1
0
    def __init__(self, model, autobalance=False):
        super(ComputeLoss, self).__init__()
        device = next(model.parameters()).device  # get model device
        h = model.hyp  # hyperparameters

        # Define criteria
        BCEcls = nn.BCEWithLogitsLoss(
            pos_weight=torch.tensor([h['cls_pw']], device=device))
        BCEobj = nn.BCEWithLogitsLoss(
            pos_weight=torch.tensor([h['obj_pw']], device=device))

        # Class label smoothing https://arxiv.org/pdf/1902.04103.pdf eqn 3
        self.cp, self.cn = smooth_BCE(eps=0.0)

        # Focal loss
        g = h['fl_gamma']  # focal loss gamma
        if g > 0:
            BCEcls, BCEobj = FocalLoss(BCEcls, g), FocalLoss(BCEobj, g)

        det = model.module.model[-1] if is_parallel(model) else model.model[
            -1]  # Detect() module
        self.balance = {
            2: [4.0, 1.0],
            3: [3.67, 1.0, 0.43],
            4: [3.78, 1.0, 0.39, 0.22],
            5: [3.88, 1.0, 0.37, 0.17, 0.10]
        }[det.nl]
        # self.balance = [1.0] * det.nl
        self.ssi = (det.stride == 16).nonzero(
            as_tuple=False).item()  # stride 16 index
        self.BCEcls, self.BCEobj, self.gr, self.hyp, self.autobalance = BCEcls, BCEobj, model.gr, h, autobalance
        for k in 'na', 'nc', 'nl', 'anchors':
            setattr(self, k, getattr(det, k))
Пример #2
0
    def __init__(self, model, autobalance=False):
        super(ComputeLoss, self).__init__()
        device = next(model.parameters()).device  # get model device
        h = model.hyp  # hyperparameters

        # Define criteria
        BCEcls = nn.BCEWithLogitsLoss(pos_weight=torch.tensor(
            [h['cls_pw']], device=device))  # class loss
        BCEobj = nn.BCEWithLogitsLoss(pos_weight=torch.tensor(
            [h['obj_pw']], device=device))  # object loss

        # Class label smoothing https://arxiv.org/pdf/1902.04103.pdf eqn 3
        # Bag of freebies : inference 중에 추가적인 computational cost없이 성능을 향상시킬 수 있는 기법
        self.cp, self.cn = smooth_BCE(eps=0.0)  # positive, negative

        # Focal loss
        g = h['fl_gamma']  # focal loss gamma
        if g > 0:
            BCEcls, BCEobj = FocalLoss(BCEcls, g), FocalLoss(
                BCEobj, g)  # class, object loss 둘다 Focalloss로 BCE를 들고 감

        det = model.module.model[-1] if is_parallel(model) else model.model[
            -1]  # Detect() module
        self.balance = {
            3: [4.0, 1.0, 0.4]
        }.get(det.nl, [4.0, 1.0, 0.25, 0.06, .02])  # P3-P7
        self.ssi = list(
            det.stride).index(16) if autobalance else 0  # stride 16 index
        self.BCEcls, self.BCEobj, self.gr, self.hyp, self.autobalance = BCEcls, BCEobj, model.gr, h, autobalance
        for k in 'na', 'nc', 'nl', 'anchors':
            setattr(self, k, getattr(det, k))
Пример #3
0
    def __init__(self, model, autobalance=False):
        self.sort_obj_iou = False
        device = next(model.parameters()).device  # get model device
        h = model.hyp  # hyperparameters

        # Define criteria
        BCEcls = nn.BCEWithLogitsLoss(
            pos_weight=torch.tensor([h['cls_pw']], device=device))
        BCEobj = nn.BCEWithLogitsLoss(
            pos_weight=torch.tensor([h['obj_pw']], device=device))

        # Class label smoothing https://arxiv.org/pdf/1902.04103.pdf eqn 3
        self.cp, self.cn = smooth_BCE(eps=h.get(
            'label_smoothing', 0.0))  # positive, negative BCE targets

        # Focal loss
        g = h['fl_gamma']  # focal loss gamma
        if g > 0:
            BCEcls, BCEobj = FocalLoss(BCEcls, g), FocalLoss(BCEobj, g)

        det = model.module.model[-1] if is_parallel(model) else model.model[
            -1]  # Detect() module
        self.balance = {
            3: [4.0, 1.0, 0.4]
        }.get(det.nl, [4.0, 1.0, 0.25, 0.06, .02])  # P3-P7
        self.ssi = list(
            det.stride).index(16) if autobalance else 0  # stride 16 index
        self.BCEcls, self.BCEobj, self.gr, self.hyp, self.autobalance = BCEcls, BCEobj, 1.0, h, autobalance
        for k in 'na', 'nc', 'nl', 'anchors':
            setattr(self, k, getattr(det, k))
Пример #4
0
 def __init__(self, model, recipe):
     self.enabled = bool(recipe)
     self.model = model.module if is_parallel(model) else model
     self.recipe = recipe
     self.manager = ScheduledModifierManager.from_yaml(
         recipe) if self.enabled else None
     self.logger = None
Пример #5
0
def build_targets(p, targets, model):
    # Build targets for compute_loss(), input targets(image,class,x,y,w,h)
    det = model.module.model[-1] if is_parallel(model) else model.model[-1]  # Detect() module
    na, nt = det.na, targets.shape[0]  # number of anchors, targets
    tcls, tbox, indices, anch = [], [], [], []
    gain = torch.ones(8, device=targets.device)  # normalized to gridspace gain
    ai = torch.arange(na, device=targets.device).float().view(na, 1).repeat(1, nt)  # same as .repeat_interleave(nt)
    targets = torch.cat((targets.repeat(na, 1, 1), ai[:, :, None]), 2)  # append anchor indices

    g = 0.5  # bias
    off = torch.tensor([[0, 0],
                        # [1, 0], [0, 1], [-1, 0], [0, -1],  # j,k,l,m
                        # [1, 1], [1, -1], [-1, 1], [-1, -1],  # jk,jm,lk,lm
                        ], device=targets.device).float() * g  # offsets

    for i in range(det.nl):
        anchors = det.anchors[i]
        gain[2:6] = torch.tensor(p[i].shape)[[3, 2, 3, 2]]  # xywh gain

        # Match targets to anchors
        t = targets * gain
        if nt:
            # Matches
            r = t[:, :, 4:6] / anchors[:, None]  # wh ratio
            j = torch.max(r, 1. / r).max(2)[0] < model.hyp['anchor_t']  # compare
            # j = wh_iou(anchors, t[:, 4:6]) > model.hyp['iou_t']  # iou(3,n)=wh_iou(anchors(3,2), gwh(n,2))
            t = t[j]  # filter

            # Offsets
            gxy = t[:, 2:4]  # grid xy
            gxi = gain[[2, 3]] - gxy  # inverse
            j, k = ((gxy % 1. < g) & (gxy > 1.)).T
            l, m = ((gxi % 1. < g) & (gxi > 1.)).T
            j = torch.stack((torch.ones_like(j),))
            t = t.repeat((off.shape[0], 1, 1))[j]
            offsets = (torch.zeros_like(gxy)[None] + off[:, None])[j]
        else:
            t = targets[0]
            offsets = 0

        # Define
        b, c = t[:, :2].long().T  # image, class
        gxy = t[:, 2:4]  # grid xy
        gwh = t[:, 4:6]  # grid wh
        gtheta = t[:, 6:7] # theta
        gij = (gxy - offsets).long()
        gi, gj = gij.T  # grid xy indices

        # Append
        a = t[:, 7].long()  # anchor indices
        indices.append((b, a, gj.clamp_(0, gain[3] - 1), gi.clamp_(0, gain[2] - 1)))  # image, anchor, grid indices
        tbox.append(torch.cat((gxy - gij, gwh, gtheta), 1))  # box
        anch.append(anchors[a])  # anchors
        tcls.append(c)  # class

    return tcls, tbox, indices, anch
Пример #6
0
def build_targets(p, targets, model):
    nt = targets.shape[0]  # number of anchors, targets
    tcls, tbox, indices, anch = [], [], [], []
    gain = torch.ones(6, device=targets.device)  # normalized to gridspace gain
    off = torch.tensor([[1, 0], [0, 1], [-1, 0], [0, -1]],
                       device=targets.device).float()  # overlap offsets

    g = 0.5  # offset
    multi_gpu = is_parallel(model)
    for i, jj in enumerate(
            model.module.yolo_layers if multi_gpu else model.yolo_layers):
        # get number of grid points and anchor vec for this yolo layer
        anchors = model.module.module_list[
            jj].anchor_vec if multi_gpu else model.module_list[jj].anchor_vec
        gain[2:] = torch.tensor(p[i].shape)[[3, 2, 3, 2]]  # xyxy gain

        # Match targets to anchors
        a, t, offsets = [], targets * gain, 0
        if nt:
            na = anchors.shape[0]  # number of anchors
            at = torch.arange(na).view(na, 1).repeat(
                1, nt)  # anchor tensor, same as .repeat_interleave(nt)
            r = t[None, :, 4:6] / anchors[:, None]  # wh ratio
            j = torch.max(r,
                          1. / r).max(2)[0] < model.hyp['anchor_t']  # compare
            # j = wh_iou(anchors, t[:, 4:6]) > model.hyp['iou_t']  # iou(3,n) = wh_iou(anchors(3,2), gwh(n,2))
            a, t = at[j], t.repeat(na, 1, 1)[j]  # filter

            # overlaps
            gxy = t[:, 2:4]  # grid xy
            z = torch.zeros_like(gxy)
            j, k = ((gxy % 1. < g) & (gxy > 1.)).T
            l, m = ((gxy % 1. > (1 - g)) & (gxy < (gain[[2, 3]] - 1.))).T
            a, t = torch.cat((a, a[j], a[k], a[l], a[m]), 0), torch.cat(
                (t, t[j], t[k], t[l], t[m]), 0)
            offsets = torch.cat((z, z[j] + off[0], z[k] + off[1],
                                 z[l] + off[2], z[m] + off[3]), 0) * g

        # Define
        b, c = t[:, :2].long().T  # image, class
        gxy = t[:, 2:4]  # grid xy
        gwh = t[:, 4:6]  # grid wh
        gij = (gxy - offsets).long()
        gi, gj = gij.T  # grid xy indices

        # Append
        #indices.append((b, a, gj, gi))  # image, anchor, grid indices
        indices.append((b, a, gj.clamp_(0, gain[3] - 1),
                        gi.clamp_(0,
                                  gain[2] - 1)))  # image, anchor, grid indices
        tbox.append(torch.cat((gxy - gij, gwh), 1))  # box
        anch.append(anchors[a])  # anchors
        tcls.append(c)  # class

    return tcls, tbox, indices, anch
Пример #7
0
def build_targets_freeanchor(p, targets, model):
    
    # Build targets for compute_loss(), input targets(image,class,x,y,w,h)
    # print(targets.shape)
    det = model.module.model[-1] if is_parallel(model) else model.model[-1]  # Detect() module
    nt = targets.shape[0]  # number of anchors, targets
    tcls, indices, anch = [], [], []
    gain = torch.ones(6, device=targets.device)  # normalized to gridspace gain
    # ai = torch.arange(na, device=targets.device).float().view(na, 1).repeat(1, nt)  # same as .repeat_interleave(nt)
    # targets = torch.cat((targets.repeat(na, 1, 1), ai[:, :, None]), 2)  # append anchor indices

    g = 0.5  # bias

    # print(p[0].shape)
    for i in range(len(p)):
        # anchors = det.anchors[i]
        # print(p[i].shape)
        gain[2:6] = torch.tensor(p[i].shape)[[2, 1, 2, 1]]  # xyxy gain
        # print(gain)

        # Match targets to anchors
        if nt:
            t = targets * gain
            r = t[:, 4:6]  # wh ratio
    
        
            if i ==0:
                j =  torch.max(t[:,4:6],1)[0] < 16  # compare
            elif i==1:
                j =  torch.max(t[:,4:6],1)[0] >6
                j1_ = torch.max(t[:,4:6],1)[0]<12
                j = j & j1_
                
            else:
                j =  torch.max(t[:,4:6],1)[0] >6

            # print(j)
            # print(torch.max(t[:,4:6],0)[0] < 2)
                # j = wh_iou(anchors, t[:, 4:6]) > model.hyp['iou_t']  # iou(3,n)=wh_iou(anchors(3,2), gwh(n,2))
            t = t[j]  # filter
            offsets = 0
            b, c = t[:,:2].long().T  # image, class
            gxy = t[:, 2:4]  # grid xy
            gxy = torch.round(gxy)
            gwh = t[:, 4:6]  # grid wh
            gij = (gxy - offsets).long()
            gi, gj = gij.T  # grid xy indices
            indices.append((b, gj.clamp_(0, gain[3] - 1), gi.clamp_(0, gain[2] - 1)))  # image, grid indices
            # tbox.append(torch.cat((gxy - gij, gwh), 1))  # box
            anch.append(gwh)  # anchors
            tcls.append(c)  # class

    return tcls, indices, anch
Пример #8
0
def check_anchors(dataset, model, thr=4.0, imgsz=640):
    # Check anchor fit to data, recompute if necessary
    prefix = colorstr('autoanchor: ')
    print(f'\n{prefix}Analyzing anchors... ', end='')
    m = model.module.detection if is_parallel(model) else model.detection
    shapes = imgsz * dataset.shapes / dataset.shapes.max(1, keepdims=True)
    scale = np.random.uniform(0.9, 1.1,
                              size=(shapes.shape[0], 1))  # augment scale
    wh = torch.tensor(
        np.concatenate([
            l[:, 3:5] * s for s, l in zip(shapes * scale, dataset.labels)
        ])).float()  # wh

    def metric(k):  # compute metric
        r = wh[:, None] / k[None]
        x = torch.min(r, 1. / r).min(2)[0]  # ratio metric
        best = x.max(1)[0]  # best_x
        aat = (x > 1. / thr).float().sum(1).mean()  # anchors above threshold
        bpr = (best > 1. / thr).float().mean()  # best possible recall
        return bpr, aat

    bpr, aat = metric(m.anchor_grid.clone().cpu().view(-1, 2))
    print(
        f'anchors/target = {aat:.2f}, Best Possible Recall (BPR) = {bpr:.4f}',
        end='')
    if bpr < 0.98:  # threshold to recompute
        print('. Attempting to improve anchors, please wait...')
        na = m.anchor_grid.numel() // 2  # number of anchors
        new_anchors = kmean_anchors(dataset,
                                    n=na,
                                    img_size=imgsz,
                                    thr=thr,
                                    gen=1000,
                                    verbose=False)
        new_bpr = metric(new_anchors.reshape(-1, 2))[0]
        if new_bpr > bpr:  # replace anchors
            new_anchors = torch.tensor(
                new_anchors, device=m.anchors.device).type_as(m.anchors)
            m.anchor_grid[:] = new_anchors.clone().view_as(
                m.anchor_grid)  # for inference
            m.anchors[:] = new_anchors.clone().view_as(
                m.anchors) / m.stride.to(m.anchors.device).view(-1, 1,
                                                                1)  # loss
            check_anchor_order(m)
            print(
                f'{prefix}New anchors saved to model. Update model *.yaml to use these anchors in the future.'
            )
        else:
            print(
                f'{prefix}Original anchors better than new anchors. Proceeding with original anchors.'
            )
    print('')  # newline
Пример #9
0
def create_checkpoint(epoch, model, optimizer, ema, sparseml_wrapper,
                      **kwargs):
    pickle = not sparseml_wrapper.qat_active(
        epoch)  # qat does not support pickled exports
    ckpt_model = deepcopy(
        model.module if is_parallel(model) else model).float()
    yaml = ckpt_model.yaml
    if not pickle:
        ckpt_model = ckpt_model.state_dict()

    return {
        'epoch': epoch,
        'model': ckpt_model,
        'optimizer': optimizer.state_dict(),
        'yaml': yaml,
        **ema.state_dict(pickle),
        **sparseml_wrapper.state_dict(),
        **kwargs
    }
Пример #10
0
def build_targets(p, targets, model):
    # 1.将targets 重复3遍(3=层anchor数目),也就是将每个gt bbox复制变成独立的3份,方便和每个位置的3个anchor单独匹配
    # Build targets for compute_loss(), input targets(image,class,x,y,w,h)
    det = model.module.model[-1] if is_parallel(model) else model.model[
        -1]  # Detect() module
    na, nt = det.na, targets.shape[0]  # number of anchors, number of targets
    tcls, tbox, indices, anch, ttar = [], [], [], [], []
    gain = torch.ones(7, device=targets.device)  # normalized to gridspace gain
    # anchor=3个数,将target变成3*target格式,方便后面计算loss
    # anchor索引,后面有用,用于表示当前bbox和当前层的哪个anchor匹配
    ai = torch.arange(na, device=targets.device).float().view(na, 1).repeat(
        1, nt)  # same as .repeat_interleave(nt)
    # 先repeat和当前层anchor个数一样,相当于每个bbox变成了3个,然后和3个anchor单独进行匹配
    targets = torch.cat((targets.repeat(na, 1, 1), ai[:, :, None]),
                        2)  # append anchor indices

    g = 0.5  # bias     # 网格中心偏移
    # 附近的4个网格
    off = torch.tensor(
        [
            [0, 0],
            [1, 0],
            [0, 1],
            [-1, 0],
            [0, -1],  # j,k,l,m
            # [1, 1], [1, -1], [-1, 1], [-1, -1],  # jk,jm,lk,lm
        ],
        device=targets.device).float() * g  # offsets

    for i in range(det.nl):  # 3个输出分支
        anchors = det.anchors[i]  # 当前分支anchor
        # p是网络输出值,  1 1 特征图大小 特征图大小 特征图大小 特征图大小 1
        gain[2:6] = torch.tensor(p[i].shape)[[3, 2, 3, 2]]

        # 2.对每个输出层单独匹配。首先将targets变成anchor尺度,方便计算;然后将target wh shape和anchor的wh计算比例,如果其最大比例过大,则说明匹配度不高,将该bbox过滤,在当前层认为是bg
        # Match targets to anchors   targets的xywh本身是归一化尺度,故需要变成特征图尺度
        t = targets * gain
        if nt:
            # 计算当前target的wh和anchor的wh之间的比值
            # 如果w和h的最大比例大于预设阈值model.hyp['anchor_t']=4,则说明当前target和anchor匹配度不高,不应该强制回归,应该把target丢弃
            # 主要是把shape和anchor匹配度不高的label去掉,这其实也说明了该物体的大小比较极端,要么太大,要么太小,要么wh差距很大
            # 基于shape过滤后,就会出现某些bbox仅仅和当前层的几个anchor匹配,即可能出现某些bbox仅仅和其中某个匹配,而不是和当前位置的所有anchor匹配
            r = t[:, :, 4:6] / anchors[:, None]  # wh ratio		不考虑xy坐标
            j = torch.max(r,
                          1. / r).max(2)[0] < model.hyp['anchor_t']  # compare
            # j = wh_iou(anchors, t[:, 4:6]) > model.hyp['iou_t']  # iou(3,n)=wh_iou(anchors(3,2), gwh(n,2))
            t = t[j]  # filter 注意过滤规则是没有考虑xy的,也就是当前bbox的wh是和所有anchor计算的

            # 3.计算最近的2个邻居网格
            # https://www.kaggle.com/c/global-wheat-detection/discussion/172436
            # 网格的3个附近点,不再是落在哪个网格就计算该网格的anchor,而是依靠中心点的情况
            # 选择最近的3个网格,作为落脚点,可以极大增加正样本数
            # 也就是对于保留的bbox,最少有3个anchor匹配,最多9个
            gxy = t[:, 2:4]  # grid xy  label的中心点坐标
            gxi = gain[[2, 3]] - gxy  # inverse
            # 这两个条件可以选择出最靠近的2个邻居,再加上自己,就是3个
            j, k = ((gxy % 1. < g) & (gxy > 1.)).T
            l, m = ((gxi % 1. < g) & (gxi > 1.)).T
            j = torch.stack((torch.ones_like(j), j, k, l, m))
            # 5是因为预设的off是5个,现在选择出最近的3个(包括0, 0也就是自己)
            t = t.repeat(
                (5, 1, 1))[j]  # (label个数x3,7) 附近的2个网格anchor,都算该bbox的anchor点
            offsets = (torch.zeros_like(gxy)[None] +
                       off[:, None])[j]  # 选择出最近的3个
        else:
            t = targets[0]
            offsets = 0

        # 4.对每个bbox找出对应的正样本anchor,其中包括b表示当前bbox属于batch内部的第几张图片,a表示当前bbox和当前层的第几个anchor匹配上,gi,gj是对应的负责预测该bbox的网格坐标,
        # gxy是不考虑offset或者说yolov3里面设定的该Bbox的负责预测网格,gwh是对应的归一化bbox wh,c是该Bbox类别
        # 按照yolov3,则直接(gxy - 0.5).long()即可得到网格坐标
        # 但是这里考虑了附近网格,即采用了跨网格预测,估offsets不再是0.5而是2个邻居
        # 所以xy回归范围也变了,故xy预测输出不再是0-1,而是-1~1,加上offset偏移,则为-0.5-1.5
        # 由于shape过滤规则,宽高范围也也不再是任意范围,而是0-4,因为超过4倍比例是算不匹配的anchor,所以最大是4
        b, c = t[:, :2].long().T  # image, class
        gxy = t[:, 2:4]  # grid xy
        gwh = t[:, 4:6]  # grid wh
        gij = (gxy - offsets).long()  # 当前label落在哪个网格上
        gi, gj = gij.T  # grid xy indices

        # Append
        a = t[:, 6].long()  # anchor indices
        indices.append(
            (b, a, gj.clamp_(0, gain[3] - 1),
             gi.clamp_(0, gain[2] - 1)))  # image, anchor, grid indices(j,i)
        tbox.append(torch.cat((gxy - gij, gwh), 1))  # box
        ttar.append(torch.cat((gxy, gwh), 1))  # box
        anch.append(anchors[a])  # anchors
        tcls.append(c)  # class

    return tcls, tbox, indices, anch, ttar
Пример #11
0
def train(hyp, opt, device, tb_writer=None):
    logger.info(
        colorstr("hyperparameters: ") + ", ".join(f"{k}={v}"
                                                  for k, v in hyp.items()))
    save_dir, epochs, batch_size, total_batch_size, weights, rank = (
        Path(opt.save_dir),  # save_dir
        opt.epochs,
        opt.batch_size,
        opt.total_batch_size,
        opt.weights,
        opt.global_rank,
    )

    # Directories
    wdir = save_dir / "weights"
    wdir.mkdir(parents=True, exist_ok=True)  # make dir
    last = wdir / "last.pt"
    best = wdir / "best.pt"
    results_file = save_dir / "results.txt"

    # Save run settings
    with open(save_dir / "hyp.yaml", "w") as f:
        yaml.safe_dump(hyp, f, sort_keys=False)
    with open(save_dir / "opt.yaml", "w") as f:
        yaml.safe_dump(vars(opt), f, sort_keys=False)

    # Configure
    plots = not opt.evolve  # create plots
    cuda = device.type != "cpu"
    init_seeds(2 + rank)
    with open(opt.data) as f:
        data_dict = yaml.safe_load(f)  # data dict
    is_coco = opt.data.endswith("coco.yaml")

    # Logging- Doing this before checking the dataset. Might update data_dict
    loggers = {"wandb": None}  # loggers dict
    if rank in [-1, 0]:
        opt.hyp = hyp  # add hyperparameters
        run_id = (torch.load(weights).get("wandb_id")
                  if weights.endswith(".pt") and os.path.isfile(weights) else
                  None)
        wandb_logger = WandbLogger(opt, save_dir.stem, run_id, data_dict)
        loggers["wandb"] = wandb_logger.wandb
        data_dict = wandb_logger.data_dict
        if wandb_logger.wandb:
            weights, epochs, hyp = (
                opt.weights,
                opt.epochs,
                opt.hyp,
            )  # WandbLogger might update weights, epochs if resuming

    nc = 1 if opt.single_cls else int(data_dict["nc"])  # number of classes
    names = (["item"] if opt.single_cls and len(data_dict["names"]) != 1 else
             data_dict["names"])  # class names
    assert len(names) == nc, "%g names found for nc=%g dataset in %s" % (
        len(names),
        nc,
        opt.data,
    )  # check

    # Model
    pretrained = weights.endswith(".pt")
    if pretrained:
        with torch_distributed_zero_first(rank):
            attempt_download(weights)  # download if not found locally
        ckpt = torch.load(weights, map_location=device)  # load checkpoint
        model = Model(opt.cfg or ckpt["model"].yaml,
                      ch=3,
                      nc=nc,
                      anchors=hyp.get("anchors")).to(device)  # create
        exclude = (["anchor"] if
                   (opt.cfg or hyp.get("anchors")) and not opt.resume else []
                   )  # exclude keys
        state_dict = ckpt["model"].float().state_dict()  # to FP32
        state_dict = intersect_dicts(state_dict,
                                     model.state_dict(),
                                     exclude=exclude)  # intersect
        model.load_state_dict(state_dict, strict=False)  # load
        logger.info(
            "Transferred %g/%g items from %s" %
            (len(state_dict), len(model.state_dict()), weights))  # report
    else:
        model = Model(opt.cfg, ch=3, nc=nc,
                      anchors=hyp.get("anchors")).to(device)  # create
    with torch_distributed_zero_first(rank):
        check_dataset(data_dict)  # check

    # -------------- SageMaker の train と val  ------------- #
    #train_path = data_dict["train"]
    #test_path = data_dict["val"]

    data_path = opt.data_dir
    train_path = data_path + "/train2017.txt"
    test_path = data_path + "/val2017.txt"

    # Freeze
    freeze = []  # parameter names to freeze (full or partial)
    for k, v in model.named_parameters():
        v.requires_grad = True  # train all layers
        if any(x in k for x in freeze):
            print("freezing %s" % k)
            v.requires_grad = False

    # Optimizer
    nbs = 64  # nominal batch size
    accumulate = max(round(nbs / total_batch_size),
                     1)  # accumulate loss before optimizing
    hyp["weight_decay"] *= total_batch_size * accumulate / nbs  # scale weight_decay
    logger.info(f"Scaled weight_decay = {hyp['weight_decay']}")

    pg0, pg1, pg2 = [], [], []  # optimizer parameter groups
    for k, v in model.named_modules():
        if hasattr(v, "bias") and isinstance(v.bias, nn.Parameter):
            pg2.append(v.bias)  # biases
        if isinstance(v, nn.BatchNorm2d):
            pg0.append(v.weight)  # no decay
        elif hasattr(v, "weight") and isinstance(v.weight, nn.Parameter):
            pg1.append(v.weight)  # apply decay

    if opt.adam:
        optimizer = optim.Adam(pg0,
                               lr=hyp["lr0"],
                               betas=(hyp["momentum"],
                                      0.999))  # adjust beta1 to momentum
    else:
        optimizer = optim.SGD(pg0,
                              lr=hyp["lr0"],
                              momentum=hyp["momentum"],
                              nesterov=True)

    optimizer.add_param_group({
        "params": pg1,
        "weight_decay": hyp["weight_decay"]
    })  # add pg1 with weight_decay
    optimizer.add_param_group({"params": pg2})  # add pg2 (biases)
    logger.info("Optimizer groups: %g .bias, %g conv.weight, %g other" %
                (len(pg2), len(pg1), len(pg0)))
    del pg0, pg1, pg2

    # Scheduler https://arxiv.org/pdf/1812.01187.pdf
    # https://pytorch.org/docs/stable/_modules/torch/optim/lr_scheduler.html#OneCycleLR
    if opt.linear_lr:
        lf = (lambda x: (1 - x / (epochs - 1)) *
              (1.0 - hyp["lrf"]) + hyp["lrf"])  # linear
    else:
        lf = one_cycle(1, hyp["lrf"], epochs)  # cosine 1->hyp['lrf']
    scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf)
    # plot_lr_scheduler(optimizer, scheduler, epochs)

    # EMA
    ema = ModelEMA(model) if rank in [-1, 0] else None

    # Resume
    start_epoch, best_fitness = 0, 0.0
    if pretrained:
        # Optimizer
        if ckpt["optimizer"] is not None:
            optimizer.load_state_dict(ckpt["optimizer"])
            best_fitness = ckpt["best_fitness"]

        # EMA
        if ema and ckpt.get("ema"):
            ema.ema.load_state_dict(ckpt["ema"].float().state_dict())
            ema.updates = ckpt["updates"]

        # Results
        if ckpt.get("training_results") is not None:
            results_file.write_text(
                ckpt["training_results"])  # write results.txt

        # Epochs
        start_epoch = ckpt["epoch"] + 1
        if opt.resume:
            assert (
                start_epoch > 0
            ), "%s training to %g epochs is finished, nothing to resume." % (
                weights,
                epochs,
            )
        if epochs < start_epoch:
            logger.info(
                "%s has been trained for %g epochs. Fine-tuning for %g additional epochs."
                % (weights, ckpt["epoch"], epochs))
            epochs += ckpt["epoch"]  # finetune additional epochs

        del ckpt, state_dict

    # Image sizes
    gs = max(int(model.stride.max()), 32)  # grid size (max stride)
    nl = model.model[
        -1].nl  # number of detection layers (used for scaling hyp['obj'])
    imgsz, imgsz_test = [check_img_size(x, gs) for x in opt.img_size
                         ]  # verify imgsz are gs-multiples

    # DP mode
    if cuda and rank == -1 and torch.cuda.device_count() > 1:
        model = torch.nn.DataParallel(model)

    # SyncBatchNorm
    if opt.sync_bn and cuda and rank != -1:
        model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model).to(device)
        logger.info("Using SyncBatchNorm()")

    # Trainloader
    ## ここで dataset 作ってる、
    dataloader, dataset = create_dataloader(
        train_path,
        imgsz,
        batch_size,
        gs,
        opt,
        hyp=hyp,
        augment=True,
        cache=opt.cache_images,
        rect=opt.rect,
        rank=rank,
        world_size=opt.world_size,
        workers=opt.workers,
        image_weights=opt.image_weights,
        quad=opt.quad,
        prefix=colorstr("train: "),
    )
    mlc = np.concatenate(dataset.labels, 0)[:, 0].max()  # max label class
    nb = len(dataloader)  # number of batches
    assert (
        mlc < nc
    ), "Label class %g exceeds nc=%g in %s. Possible class labels are 0-%g" % (
        mlc,
        nc,
        opt.data,
        nc - 1,
    )

    # Process 0
    if rank in [-1, 0]:
        testloader = create_dataloader(
            test_path,
            imgsz_test,
            batch_size * 2,
            gs,
            opt,  # testloader
            hyp=hyp,
            cache=opt.cache_images and not opt.notest,
            rect=True,
            rank=-1,
            world_size=opt.world_size,
            workers=opt.workers,
            pad=0.5,
            prefix=colorstr("val: "),
        )[0]

        if not opt.resume:
            labels = np.concatenate(dataset.labels, 0)
            c = torch.tensor(labels[:, 0])  # classes
            # cf = torch.bincount(c.long(), minlength=nc) + 1.  # frequency
            # model._initialize_biases(cf.to(device))
            if plots:
                plot_labels(labels, names, save_dir, loggers)
                if tb_writer:
                    tb_writer.add_histogram("classes", c, 0)

            # Anchors
            if not opt.noautoanchor:
                check_anchors(dataset,
                              model=model,
                              thr=hyp["anchor_t"],
                              imgsz=imgsz)
            model.half().float()  # pre-reduce anchor precision

    # DDP mode
    if cuda and rank != -1:
        ## 変更ポイント3、ラップ
        model = DDP(
            model,
            device_ids=[opt.local_rank],
            output_device=opt.local_rank,
            # nn.MultiheadAttention incompatibility with DDP https://github.com/pytorch/pytorch/issues/26698
            find_unused_parameters=any(
                isinstance(layer, nn.MultiheadAttention)
                for layer in model.modules()),
        )

    # Model parameters
    hyp["box"] *= 3.0 / nl  # scale to layers
    hyp["cls"] *= nc / 80.0 * 3.0 / nl  # scale to classes and layers
    hyp["obj"] *= (imgsz / 640)**2 * 3.0 / nl  # scale to image size and layers
    hyp["label_smoothing"] = opt.label_smoothing
    model.nc = nc  # attach number of classes to model
    model.hyp = hyp  # attach hyperparameters to model
    model.gr = 1.0  # iou loss ratio (obj_loss = 1.0 or iou)
    model.class_weights = (
        labels_to_class_weights(dataset.labels, nc).to(device) * nc
    )  # attach class weights
    model.names = names

    # Start training
    t0 = time.time()
    nw = max(round(hyp["warmup_epochs"] * nb),
             1000)  # number of warmup iterations, max(3 epochs, 1k iterations)
    # nw = min(nw, (epochs - start_epoch) / 2 * nb)  # limit warmup to < 1/2 of training
    maps = np.zeros(nc)  # mAP per class
    results = (0, 0, 0, 0, 0, 0, 0
               )  # P, R, [email protected], [email protected], val_loss(box, obj, cls)
    scheduler.last_epoch = start_epoch - 1  # do not move
    scaler = amp.GradScaler(enabled=cuda)
    compute_loss = ComputeLoss(model)  # init loss class
    logger.info(f"Image sizes {imgsz} train, {imgsz_test} test\n"
                f"Using {dataloader.num_workers} dataloader workers\n"
                f"Logging results to {save_dir}\n"
                f"Starting training for {epochs} epochs...")
    for epoch in range(
            start_epoch, epochs
    ):  # epoch ------------------------------------------------------------------
        print(epoch)
        model.train()

        # Update image weights (optional)
        if opt.image_weights:
            # Generate indices
            if rank in [-1, 0]:
                cw = (model.class_weights.cpu().numpy() * (1 - maps)**2 / nc
                      )  # class weights
                iw = labels_to_image_weights(dataset.labels,
                                             nc=nc,
                                             class_weights=cw)  # image weights
                dataset.indices = random.choices(
                    range(dataset.n), weights=iw,
                    k=dataset.n)  # rand weighted idx
            # Broadcast if DDP
            if rank != -1:
                indices = (torch.tensor(dataset.indices)
                           if rank == 0 else torch.zeros(dataset.n)).int()
                dist.broadcast(indices, 0)
                if rank != 0:
                    dataset.indices = indices.cpu().numpy()

        # Update mosaic border
        # b = int(random.uniform(0.25 * imgsz, 0.75 * imgsz + gs) // gs * gs)
        # dataset.mosaic_border = [b - imgsz, -b]  # height, width borders

        mloss = torch.zeros(4, device=device)  # mean losses
        if rank != -1:
            dataloader.sampler.set_epoch(epoch)
        pbar = enumerate(dataloader)
        logger.info(
            ("\n" + "%10s" * 8) % ("Epoch", "gpu_mem", "box", "obj", "cls",
                                   "total", "labels", "img_size"))
        if rank in [-1, 0]:
            pbar = tqdm(pbar, total=nb)  # progress bar
        optimizer.zero_grad()
        for i, (
                imgs,
                targets,
                paths,
                _,
        ) in (
                pbar
        ):  # batch -------------------------------------------------------------
            ni = i + nb * epoch  # number integrated batches (since train start)
            print(f'batch: {ni}')
            imgs = (imgs.to(device, non_blocking=True).float() / 255.0
                    )  # uint8 to float32, 0-255 to 0.0-1.0

            # Warmup
            if ni <= nw:
                xi = [0, nw]  # x interp
                # model.gr = np.interp(ni, xi, [0.0, 1.0])  # iou loss ratio (obj_loss = 1.0 or iou)
                accumulate = max(
                    1,
                    np.interp(ni, xi, [1, nbs / total_batch_size]).round())
                for j, x in enumerate(optimizer.param_groups):
                    # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
                    x["lr"] = np.interp(
                        ni,
                        xi,
                        [
                            hyp["warmup_bias_lr"] if j == 2 else 0.0,
                            x["initial_lr"] * lf(epoch),
                        ],
                    )
                    if "momentum" in x:
                        x["momentum"] = np.interp(
                            ni, xi, [hyp["warmup_momentum"], hyp["momentum"]])

            # Multi-scale
            if opt.multi_scale:
                sz = random.randrange(imgsz * 0.5,
                                      imgsz * 1.5 + gs) // gs * gs  # size
                sf = sz / max(imgs.shape[2:])  # scale factor
                if sf != 1:
                    ns = [math.ceil(x * sf / gs) * gs for x in imgs.shape[2:]
                          ]  # new shape (stretched to gs-multiple)
                    imgs = F.interpolate(imgs,
                                         size=ns,
                                         mode="bilinear",
                                         align_corners=False)

            # Forward
            with amp.autocast(enabled=cuda):
                pred = model(imgs)  # forward
                loss, loss_items = compute_loss(
                    pred, targets.to(device))  # loss scaled by batch_size
                if rank != -1:
                    loss *= (opt.world_size
                             )  # gradient averaged between devices in DDP mode
                if opt.quad:
                    loss *= 4.0

            # Backward
            scaler.scale(loss).backward()

            # Optimize
            if ni % accumulate == 0:
                scaler.step(optimizer)  # optimizer.step
                scaler.update()
                optimizer.zero_grad()
                if ema:
                    ema.update(model)

            # Print
            if rank in [-1, 0]:
                mloss = (mloss * i + loss_items) / (i + 1
                                                    )  # update mean losses
                mem = "%.3gG" % (torch.cuda.memory_reserved() / 1e9
                                 if torch.cuda.is_available() else 0)  # (GB)
                s = ("%10s" * 2 + "%10.4g" * 6) % (
                    "%g/%g" % (epoch, epochs - 1),
                    mem,
                    *mloss,
                    targets.shape[0],
                    imgs.shape[-1],
                )
                pbar.set_description(s)

                # Plot
                if plots and ni < 3:
                    f = save_dir / f"train_batch{ni}.jpg"  # filename
                    Thread(target=plot_images,
                           args=(imgs, targets, paths, f),
                           daemon=True).start()
                    #if tb_writer:
                    #    tb_writer.add_graph(
                    #        torch.jit.trace(model, imgs, strict=False), []
                    #    )  # add model graph
                    #    # tb_writer.add_image(f, result, dataformats='HWC', global_step=epoch)
                elif plots and ni == 10 and wandb_logger.wandb:
                    wandb_logger.log({
                        "Mosaics": [
                            wandb_logger.wandb.Image(str(x), caption=x.name)
                            for x in save_dir.glob("train*.jpg") if x.exists()
                        ]
                    })

            # end batch ------------------------------------------------------------------------------------------------
        # end epoch ----------------------------------------------------------------------------------------------------

        # Scheduler
        lr = [x["lr"] for x in optimizer.param_groups]  # for tensorboard
        scheduler.step()

        # DDP process 0 or single-GPU
        # 変更ポイント5 の dist.get_rank()==0 はここで反映されている
        if rank in [-1, 0]:
            # mAP
            ema.update_attr(
                model,
                include=[
                    "yaml", "nc", "hyp", "gr", "names", "stride",
                    "class_weights"
                ],
            )
            final_epoch = epoch + 1 == epochs
            if not opt.notest or final_epoch:  # Calculate mAP
                wandb_logger.current_epoch = epoch + 1
                results, maps, times = test.test(
                    data_dict,
                    batch_size=batch_size * 2,
                    imgsz=imgsz_test,
                    model=ema.ema,
                    single_cls=opt.single_cls,
                    dataloader=testloader,
                    save_dir=save_dir,
                    verbose=nc < 50 and final_epoch,
                    plots=plots and final_epoch,
                    wandb_logger=wandb_logger,
                    compute_loss=compute_loss,
                    is_coco=is_coco,
                )

            # Write
            with open(results_file, "a") as f:
                f.write(s + "%10.4g" * 7 % results +
                        "\n")  # append metrics, val_loss

            # Log
            tags = [
                "train/box_loss",
                "train/obj_loss",
                "train/cls_loss",  # train loss
                "metrics/precision",
                "metrics/recall",
                "metrics/mAP_0.5",
                "metrics/mAP_0.5:0.95",
                "val/box_loss",
                "val/obj_loss",
                "val/cls_loss",  # val loss
                "x/lr0",
                "x/lr1",
                "x/lr2",
            ]  # params
            for x, tag in zip(list(mloss[:-1]) + list(results) + lr, tags):
                if tb_writer:
                    tb_writer.add_scalar(tag, x, epoch)  # tensorboard
                if wandb_logger.wandb:
                    wandb_logger.log({tag: x})  # W&B

            # Update best mAP
            fi = fitness(np.array(results).reshape(
                1, -1))  # weighted combination of [P, R, [email protected], [email protected]]
            if fi > best_fitness:
                best_fitness = fi
            wandb_logger.end_epoch(best_result=best_fitness == fi)

            # Save model
            if (not opt.nosave) or (final_epoch and not opt.evolve):  # if save
                ckpt = {
                    "epoch":
                    epoch,
                    "best_fitness":
                    best_fitness,
                    "training_results":
                    results_file.read_text(),
                    "model":
                    deepcopy(
                        model.module if is_parallel(model) else model).half(),
                    "ema":
                    deepcopy(ema.ema).half(),
                    "updates":
                    ema.updates,
                    "optimizer":
                    optimizer.state_dict(),
                    "wandb_id":
                    wandb_logger.wandb_run.id if wandb_logger.wandb else None,
                }

                # Save last, best and delete
                torch.save(ckpt, last)
                if best_fitness == fi:
                    torch.save(ckpt, best)
                if wandb_logger.wandb:
                    if ((epoch + 1) % opt.save_period == 0
                            and not final_epoch) and opt.save_period != -1:
                        wandb_logger.log_model(last.parent,
                                               opt,
                                               epoch,
                                               fi,
                                               best_model=best_fitness == fi)
                del ckpt

        # end epoch ----------------------------------------------------------------------------------------------------
    # end training
    if rank in [-1, 0]:
        # Plots
        if plots:
            plot_results(save_dir=save_dir)  # save as results.png
            if wandb_logger.wandb:
                files = [
                    "results.png",
                    "confusion_matrix.png",
                    *[f"{x}_curve.png" for x in ("F1", "PR", "P", "R")],
                ]
                wandb_logger.log({
                    "Results": [
                        wandb_logger.wandb.Image(str(save_dir / f), caption=f)
                        for f in files if (save_dir / f).exists()
                    ]
                })
        # Test best.pt
        logger.info("%g epochs completed in %.3f hours.\n" %
                    (epoch - start_epoch + 1, (time.time() - t0) / 3600))
        if opt.data.endswith("coco.yaml") and nc == 80:  # if COCO
            for m in (last,
                      best) if best.exists() else (last):  # speed, mAP tests
                results, _, _ = test.test(
                    opt.data,
                    batch_size=batch_size * 2,
                    imgsz=imgsz_test,
                    conf_thres=0.001,
                    iou_thres=0.7,
                    model=attempt_load(m, device).half(),
                    single_cls=opt.single_cls,
                    dataloader=testloader,
                    save_dir=save_dir,
                    save_json=True,
                    plots=False,
                    is_coco=is_coco,
                )

        # Strip optimizers
        final = best if best.exists() else last  # final model
        for f in last, best:
            if f.exists():
                strip_optimizer(f)  # strip optimizers
        if opt.bucket:
            os.system(f"gsutil cp {final} gs://{opt.bucket}/weights")  # upload
        if wandb_logger.wandb and not opt.evolve:  # Log the stripped model
            wandb_logger.wandb.log_artifact(
                str(final),
                type="model",
                name="run_" + wandb_logger.wandb_run.id + "_model",
                aliases=["last", "best", "stripped"],
            )
        wandb_logger.finish_run()
    else:
        dist.destroy_process_group()
    torch.cuda.empty_cache()
    return results
Пример #12
0
def train(hyp, opt, device, tb_writer=None, wandb=None):
    logger.info(f'Hyperparameters {hyp}')
    save_dir, epochs, batch_size, total_batch_size, weights, rank = \
        Path(opt.save_dir), opt.epochs, opt.batch_size, opt.total_batch_size, opt.weights, opt.global_rank

    # Directories
    wdir = save_dir / 'weights'
    wdir.mkdir(parents=True, exist_ok=True)  # make dir
    last = wdir / 'last.pt'
    best = wdir / 'best.pt'
    results_file = save_dir / 'results.txt'

    # Save run settings
    with open(save_dir / 'hyp.yaml', 'w') as f:
        yaml.dump(hyp, f, sort_keys=False)
    with open(save_dir / 'opt.yaml', 'w') as f:
        yaml.dump(vars(opt), f, sort_keys=False)

    # Configure
    plots = not opt.evolve  # create plots
    cuda = device.type != 'cpu'
    init_seeds(2 + rank)
    with open(opt.data) as f:
        data_dict = yaml.load(f, Loader=yaml.FullLoader)  # data dict
    with torch_distributed_zero_first(rank):
        check_dataset(data_dict)  # check
    train_path = data_dict['train']
    test_path = data_dict['val']
    nc, names = (1, ['item']) if opt.single_cls else (int(
        data_dict['nc']), data_dict['names'])  # number classes, names
    assert len(names) == nc, '%g names found for nc=%g dataset in %s' % (
        len(names), nc, opt.data)  # check

    # Model
    pretrained = weights.endswith('.pt')
    if pretrained:
        with torch_distributed_zero_first(rank):
            attempt_download(weights)  # download if not found locally
        ckpt = torch.load(weights, map_location=device)  # load checkpoint
        if hyp.get('anchors'):
            ckpt['model'].yaml['anchors'] = round(
                hyp['anchors'])  # force autoanchor

        detector_args = {}
        detector_args['conf_thres'] = 0.1
        detector_args['iou_thres'] = 0.6
        model = refine_yolo(opt.cfg or ckpt['model'].yaml,
                            ch=3,
                            nc=nc,
                            detector_args=detector_args).to(device)  # create
        exclude = ['anchor'] if opt.cfg or hyp.get('anchors') else [
        ]  # exclude keys
        state_dict = ckpt['model'].float().state_dict()  # to FP32
        state_dict = intersect_dicts(state_dict,
                                     model.state_dict(),
                                     exclude=exclude)  # intersect
        model.load_state_dict(state_dict, strict=False)  # load
        logger.info(
            'Transferred %g/%g items from %s' %
            (len(state_dict), len(model.state_dict()), weights))  # report
    else:
        model = Model(opt.cfg, ch=3, nc=nc).to(device)  # create

    # Freeze
    freeze = []  # parameter names to freeze (full or partial)
    for k, v in model.named_parameters():
        v.requires_grad = True  # train all layers
        if any(x in k for x in freeze):
            print('freezing %s' % k)
            v.requires_grad = False

    # Optimizer
    nbs = 64  # nominal batch size
    accumulate = max(round(nbs / total_batch_size),
                     1)  # accumulate loss before optimizing
    hyp['weight_decay'] *= total_batch_size * accumulate / nbs  # scale weight_decay

    pg0, pg1, pg2 = [], [], []  # optimizer parameter groups
    for k, v in model.named_modules():
        if hasattr(v, 'bias') and isinstance(v.bias, nn.Parameter):
            pg2.append(v.bias)  # biases
        if isinstance(v, nn.BatchNorm2d):
            pg0.append(v.weight)  # no decay
        elif hasattr(v, 'weight') and isinstance(v.weight, nn.Parameter):
            pg1.append(v.weight)  # apply decay

    if opt.adam:
        optimizer = optim.Adam(pg0,
                               lr=hyp['lr0'],
                               betas=(hyp['momentum'],
                                      0.999))  # adjust beta1 to momentum
    else:
        optimizer = optim.SGD(pg0,
                              lr=hyp['lr0'],
                              momentum=hyp['momentum'],
                              nesterov=True)

    optimizer.add_param_group({
        'params': pg1,
        'weight_decay': hyp['weight_decay']
    })  # add pg1 with weight_decay
    optimizer.add_param_group({'params': pg2})  # add pg2 (biases)
    logger.info('Optimizer groups: %g .bias, %g conv.weight, %g other' %
                (len(pg2), len(pg1), len(pg0)))
    del pg0, pg1, pg2

    # Scheduler https://arxiv.org/pdf/1812.01187.pdf
    # https://pytorch.org/docs/stable/_modules/torch/optim/lr_scheduler.html#OneCycleLR
    lf = lambda x: ((1 + math.cos(x * math.pi / epochs)) / 2) * (1 - hyp[
        'lrf']) + hyp['lrf']  # cosine
    scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf)
    # plot_lr_scheduler(optimizer, scheduler, epochs)

    # Logging
    if wandb and wandb.run is None:
        opt.hyp = hyp  # add hyperparameters
        wandb_run = wandb.init(
            config=opt,
            resume="allow",
            project='YOLOv3'
            if opt.project == 'runs/train' else Path(opt.project).stem,
            name=save_dir.stem,
            id=ckpt.get('wandb_id') if 'ckpt' in locals() else None)
    loggers = {'wandb': wandb}  # loggers dict

    # Resume
    start_epoch, best_fitness = 0, 0.0
    if pretrained:
        # Optimizer
        if ckpt['optimizer'] is not None:
            optimizer.load_state_dict(ckpt['optimizer'])
            best_fitness = ckpt['best_fitness']

        # Results
        if ckpt.get('training_results') is not None:
            with open(results_file, 'w') as file:
                file.write(ckpt['training_results'])  # write results.txt

        # Epochs
        start_epoch = ckpt['epoch'] + 1
        if opt.resume:
            assert start_epoch > 0, '%s training to %g epochs is finished, nothing to resume.' % (
                weights, epochs)
        if epochs < start_epoch:
            logger.info(
                '%s has been trained for %g epochs. Fine-tuning for %g additional epochs.'
                % (weights, ckpt['epoch'], epochs))
            epochs += ckpt['epoch']  # finetune additional epochs

        del ckpt, state_dict

    # Image sizes
    gs = int(max(model.stride))  # grid size (max stride)
    imgsz, imgsz_test = [check_img_size(x, gs) for x in opt.img_size
                         ]  # verify imgsz are gs-multiples

    # DP mode
    if cuda and rank == -1 and torch.cuda.device_count() > 1:
        model = torch.nn.DataParallel(model)

    # SyncBatchNorm
    if opt.sync_bn and cuda and rank != -1:
        model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model).to(device)
        logger.info('Using SyncBatchNorm()')

    # EMA
    ema = ModelEMA(model) if rank in [-1, 0] else None

    # DDP mode
    if cuda and rank != -1:
        model = DDP(model,
                    device_ids=[opt.local_rank],
                    output_device=opt.local_rank)

    # Trainloader
    dataloader, dataset = create_dataloader(train_path,
                                            imgsz,
                                            batch_size,
                                            gs,
                                            opt,
                                            hyp=hyp,
                                            augment=True,
                                            cache=opt.cache_images,
                                            rect=opt.rect,
                                            rank=rank,
                                            world_size=opt.world_size,
                                            workers=opt.workers,
                                            image_weights=opt.image_weights)
    mlc = np.concatenate(dataset.labels, 0)[:, 0].max()  # max label class
    nb = len(dataloader)  # number of batches
    assert mlc < nc, 'Label class %g exceeds nc=%g in %s. Possible class labels are 0-%g' % (
        mlc, nc, opt.data, nc - 1)

    # Process 0
    if rank in [-1, 0]:
        ema.updates = start_epoch * nb // accumulate  # set EMA updates
        testloader = create_dataloader(test_path,
                                       imgsz_test,
                                       total_batch_size,
                                       gs,
                                       opt,
                                       hyp=hyp,
                                       cache=opt.cache_images
                                       and not opt.notest,
                                       rect=True,
                                       rank=-1,
                                       world_size=opt.world_size,
                                       workers=opt.workers)[0]  # testloader

        if not opt.resume:
            labels = np.concatenate(dataset.labels, 0)
            c = torch.tensor(labels[:, 0])  # classes
            # cf = torch.bincount(c.long(), minlength=nc) + 1.  # frequency
            # model._initialize_biases(cf.to(device))
            if plots:
                # Thread(target=plot_labels, args=(labels, save_dir, loggers), daemon=True).start()
                if tb_writer:
                    tb_writer.add_histogram('classes', c, 0)

            # Anchors
            if not opt.noautoanchor:
                check_anchors(dataset,
                              model=model,
                              thr=hyp['anchor_t'],
                              imgsz=imgsz)

    # Model parameters
    hyp['cls'] *= nc / 80.  # scale coco-tuned hyp['cls'] to current dataset
    model.nc = nc  # attach number of classes to model
    model.hyp = hyp  # attach hyperparameters to model
    model.gr = 1.0  # iou loss ratio (obj_loss = 1.0 or iou)
    model.class_weights = labels_to_class_weights(dataset.labels, nc).to(
        device)  # attach class weights
    model.names = names

    # Start training
    t0 = time.time()
    nw = max(round(hyp['warmup_epochs'] * nb),
             1000)  # number of warmup iterations, max(3 epochs, 1k iterations)
    # nw = min(nw, (epochs - start_epoch) / 2 * nb)  # limit warmup to < 1/2 of training
    maps = np.zeros(nc)  # mAP per class
    results = (0, 0, 0, 0, 0, 0, 0
               )  # P, R, [email protected], [email protected], val_loss(box, obj, cls)
    scheduler.last_epoch = start_epoch - 1  # do not move
    scaler = amp.GradScaler(enabled=cuda)
    logger.info('Image sizes %g train, %g test\n'
                'Using %g dataloader workers\nLogging results to %s\n'
                'Starting training for %g epochs...' %
                (imgsz, imgsz_test, dataloader.num_workers, save_dir, epochs))
    for epoch in range(
            start_epoch, epochs
    ):  # epoch ------------------------------------------------------------------
        model.train()

        # Update image weights (optional)
        if opt.image_weights:
            # Generate indices
            if rank in [-1, 0]:
                cw = model.class_weights.cpu().numpy() * (
                    1 - maps)**2  # class weights
                iw = labels_to_image_weights(dataset.labels,
                                             nc=nc,
                                             class_weights=cw)  # image weights
                dataset.indices = random.choices(
                    range(dataset.n), weights=iw,
                    k=dataset.n)  # rand weighted idx
            # Broadcast if DDP
            if rank != -1:
                indices = (torch.tensor(dataset.indices)
                           if rank == 0 else torch.zeros(dataset.n)).int()
                dist.broadcast(indices, 0)
                if rank != 0:
                    dataset.indices = indices.cpu().numpy()

        # Update mosaic border
        # b = int(random.uniform(0.25 * imgsz, 0.75 * imgsz + gs) // gs * gs)
        # dataset.mosaic_border = [b - imgsz, -b]  # height, width borders
        # print(device)
        # exit()
        mloss = torch.zeros(5, device=device)  # mean losses=
        if rank != -1:
            dataloader.sampler.set_epoch(epoch)
        pbar = enumerate(dataloader)
        logger.info(
            ('\n' + '%10s' * 9) % ('Epoch', 'gpu_mem', 'box', 'obj', 'cls',
                                   'total', 'refine', 'targets', 'img_size'))
        if rank in [-1, 0]:
            pbar = tqdm(pbar, total=nb)  # progress bar
        optimizer.zero_grad()
        for i, (
                imgs, targets, paths, _
        ) in pbar:  # batch -------------------------------------------------------------

            # ig = imgs[0].permute(1,2,0).numpy().copy()
            # x1 = int(targets[2])
            # x2 = int(targets[3])
            # x3 = int(targets[4])
            # x4 = int(targets[5])
            # cv2.line(ig,(x1,x2),(x3,x4),(0,255,255),2)
            # cv2.imwrite('yanzheng/1.jpg',ig)
            # print('xxxxxxxxxxxx')
            # exit()

            ni = i + nb * epoch  # number integrated batches (since train start)
            imgs = imgs.to(device, non_blocking=True).float(
            ) / 255.0  # uint8 to float32, 0-255 to 0.0-1.0

            # Warmup
            if ni <= nw:
                xi = [0, nw]  # x interp
                # model.gr = np.interp(ni, xi, [0.0, 1.0])  # iou loss ratio (obj_loss = 1.0 or iou)
                accumulate = max(
                    1,
                    np.interp(ni, xi, [1, nbs / total_batch_size]).round())
                for j, x in enumerate(optimizer.param_groups):
                    # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
                    x['lr'] = np.interp(ni, xi, [
                        hyp['warmup_bias_lr'] if j == 2 else 0.0,
                        x['initial_lr'] * lf(epoch)
                    ])
                    if 'momentum' in x:
                        x['momentum'] = np.interp(
                            ni, xi, [hyp['warmup_momentum'], hyp['momentum']])

            # Multi-scale
            if opt.multi_scale:
                sz = random.randrange(imgsz * 0.5,
                                      imgsz * 1.5 + gs) // gs * gs  # size
                sf = sz / max(imgs.shape[2:])  # scale factor
                if sf != 1:
                    ns = [math.ceil(x * sf / gs) * gs for x in imgs.shape[2:]
                          ]  # new shape (stretched to gs-multiple)
                    imgs = F.interpolate(imgs,
                                         size=ns,
                                         mode='bilinear',
                                         align_corners=False)

            # Forward
            with amp.autocast(enabled=cuda):
                # torch.autograd.set_detect_anomaly(True)
                (detect_res, pred), feature = model(imgs,
                                                    refine=True)  # forward
                loss, loss_items = compute_loss(
                    pred, targets.to(device),
                    model)  # loss scaled by batch_size
                refine_loss = torch.zeros(1, device=device)
                refine_ = False
                if epoch > 2:
                    if is_parallel(model):
                        res, boxes = model.module.detector_(
                            detect_res, feature)
                        model.module.refine_net = model.module.refine_net.to(
                            device)
                        res = model.module.refine_net(res, boxes)

                    else:
                        res, boxes = model.detector_(detect_res, feature)
                        model.refine_net = model.module.refine_net.to(device)
                        res = model.refine_net(res, boxes)
                    refine_loss, refine_loss_items = compute_loss_refinenet(
                        res, targets.to(device), boxes, model, imgs)
                    ####

                    loss += refine_loss
                loss_items = torch.cat((loss_items, refine_loss.detach()))

                if rank != -1:
                    loss *= opt.world_size  # gradient averaged between devices in DDP mode

            # Backward
            scaler.scale(loss).backward()

            # Optimize
            if ni % accumulate == 0:
                scaler.step(optimizer)  # optimizer.step
                scaler.update()
                optimizer.zero_grad()
                if ema:
                    ema.update(model)

            # Print
            if rank in [-1, 0]:
                mloss = (mloss * i + loss_items) / (i + 1
                                                    )  # update mean losses
                mem = '%.3gG' % (torch.cuda.memory_reserved() / 1E9
                                 if torch.cuda.is_available() else 0)  # (GB)
                s = ('%10s' * 2 +
                     '%10.4g' * 7) % ('%g/%g' % (epoch, epochs - 1), mem,
                                      *mloss, targets.shape[0], imgs.shape[-1])
                pbar.set_description(s)

                # Plot
                if plots and ni < 3:
                    f = save_dir / f'train_batch{ni}.jpg'  # filename
                    Thread(target=plot_images,
                           args=(imgs, targets, paths, f),
                           daemon=True).start()
                    # if tb_writer:
                    #     tb_writer.add_image(f, result, dataformats='HWC', global_step=epoch)
                    #     tb_writer.add_graph(model, imgs)  # add model to tensorboard
                elif plots and ni == 3 and wandb:
                    wandb.log({
                        "Mosaics": [
                            wandb.Image(str(x), caption=x.name)
                            for x in save_dir.glob('train*.jpg')
                        ]
                    })

            # end batch ------------------------------------------------------------------------------------------------
        # end epoch ----------------------------------------------------------------------------------------------------

        # Scheduler
        lr = [x['lr'] for x in optimizer.param_groups]  # for tensorboard
        scheduler.step()

        # DDP process 0 or single-GPU
        if rank in [-1, 0]:
            # mAP
            if ema:
                ema.update_attr(
                    model,
                    include=['yaml', 'nc', 'hyp', 'gr', 'names', 'stride'])
            final_epoch = epoch + 1 == epochs
            if not opt.notest or final_epoch:  # Calculate mAP
                results, maps, times = test_.test(
                    opt.data,
                    batch_size=total_batch_size,
                    imgsz=imgsz_test,
                    model=ema.ema,
                    single_cls=opt.single_cls,
                    dataloader=testloader,
                    save_dir=save_dir,
                    plots=plots and final_epoch,
                    log_imgs=opt.log_imgs if wandb else 0)

            # Write
            with open(results_file, 'a') as f:
                f.write(
                    s + '%10.4g' * 7 % results +
                    '\n')  # P, R, [email protected], [email protected], val_loss(box, obj, cls)
            if len(opt.name) and opt.bucket:
                os.system('gsutil cp %s gs://%s/results/results%s.txt' %
                          (results_file, opt.bucket, opt.name))

            # Log
            tags = [
                'train/box_loss',
                'train/obj_loss',
                'train/cls_loss',
                'trian/refile_loss'  # train loss
                'metrics/precision',
                'metrics/recall',
                'metrics/mAP_0.5',
                'metrics/mAP_0.5:0.95',
                'val/box_loss',
                'val/obj_loss',
                'val/cls_loss',  # val loss
                'x/lr0',
                'x/lr1',
                'x/lr2'
            ]  # params
            for x, tag in zip(
                    list(mloss[:-2]) + list(mloss[-1:-2]) + list(results) + lr,
                    tags):
                if tb_writer:
                    tb_writer.add_scalar(tag, x, epoch)  # tensorboard
                if wandb:
                    wandb.log({tag: x})  # W&B

            # Update best mAP
            fi = fitness(np.array(results).reshape(
                1, -1))  # weighted combination of [P, R, [email protected], [email protected]]
            if fi > best_fitness:
                best_fitness = fi

            # Save model
            save = (not opt.nosave) or (final_epoch and not opt.evolve)
            if save:
                with open(results_file, 'r') as f:  # create checkpoint
                    ckpt = {
                        'epoch':
                        epoch,
                        'best_fitness':
                        best_fitness,
                        'training_results':
                        f.read(),
                        'model':
                        ema.ema,
                        'optimizer':
                        None if final_epoch else optimizer.state_dict(),
                        'wandb_id':
                        wandb_run.id if wandb else None
                    }

                # Save last, best and delete
                torch.save(ckpt, last)
                if best_fitness == fi:
                    torch.save(ckpt, best)
                del ckpt
        # end epoch ----------------------------------------------------------------------------------------------------
    # end training

    if rank in [-1, 0]:
        # Strip optimizers
        n = opt.name if opt.name.isnumeric() else ''
        fresults, flast, fbest = save_dir / f'results{n}.txt', wdir / f'last{n}.pt', wdir / f'best{n}.pt'
        for f1, f2 in zip([wdir / 'last.pt', wdir / 'best.pt', results_file],
                          [flast, fbest, fresults]):
            if f1.exists():
                os.rename(f1, f2)  # rename
                if str(f2).endswith('.pt'):  # is *.pt
                    strip_optimizer(f2)  # strip optimizer
                    os.system(
                        'gsutil cp %s gs://%s/weights' %
                        (f2, opt.bucket)) if opt.bucket else None  # upload
        # Finish
        if plots:
            plot_results(save_dir=save_dir)  # save as results.png
            if wandb:
                files = [
                    'results.png', 'precision_recall_curve.png',
                    'confusion_matrix.png'
                ]
                wandb.log({
                    "Results": [
                        wandb.Image(str(save_dir / f), caption=f)
                        for f in files if (save_dir / f).exists()
                    ]
                })
        logger.info('%g epochs completed in %.3f hours.\n' %
                    (epoch - start_epoch + 1, (time.time() - t0) / 3600))
    else:
        dist.destroy_process_group()

    wandb.run.finish() if wandb and wandb.run else None
    torch.cuda.empty_cache()
    return results
Пример #13
0
def build_targets(p, targets, model):
    # Build targets for compute_loss(), input targets(image,class,x,y,w,h)
    det = model.module.model[-1] if is_parallel(model) else model.model[-1]  # Detect() module
    na, nt = det.na, targets.shape[0]  # number of anchors, targets
    # print(na, nt)
    tcls, tbox, indices, anch = [], [], [], []
    gain = torch.ones(7, device=targets.device)  # normalized to gridspace gain
    ai = torch.arange(na, device=targets.device).float().view(na, 1).repeat(1, nt)  # same as .repeat_interleave(nt)
    targets = torch.cat((targets.repeat(na, 1, 1), ai[:, :, None]), 2)  # append anchor indices
    # print(gain.shape, ai.shape, targets.shape)

    g = 0.5  # bias
    off = torch.tensor([[0, 0],
                        [1, 0], [0, 1], [-1, 0], [0, -1],  # j,k,l,m
                        # [1, 1], [1, -1], [-1, 1], [-1, -1],  # jk,jm,lk,lm
                        ], device=targets.device).float() * g  # offsets

    for i in range(det.nl):
        anchors = det.anchors[i]
        # print(anchors.shape)
        gain[2:6] = torch.tensor(p[i].shape)[[3, 2, 3, 2]]  # xyxy gain

        # Match targets to anchors
        # print(targets[:, :, :6].shape, targets[:, :, -1][:,:,None].shape)
        t = torch.cat((targets[:, :, :6], targets[:, :, -1][:,:,None]), 2)  * gain
        # print(gain[2:4].repeat(68).shape, targets[:, :, 7:].shape)
        landmark_xy = targets[:, :, 6:16] * gain[2:4].repeat(5)
        print("162:", landmark_xy.shape)

        if nt:
            # Matches
            # print(anchors[:, None].shape)
            r = t[:, :, 4:6] / anchors[:, None]  # wh ratio
            # print("torch max:", torch.max(r, 1. / r).shape)
            j = torch.max(r, 1. / r).max(2)[0] < model.hyp['anchor_t']  # compare
            # j = wh_iou(anchors, t[:, 4:6]) > model.hyp['iou_t']  # iou(3,n)=wh_iou(anchors(3,2), gwh(n,2))
            # print(j.shape, t.shape)
            t = t[j]  # filter
            landmark_xy = landmark_xy[j]
            print("174:", landmark_xy.shape)

            # Offsets
            gxy = t[:, 2:4]  # grid xy
            gxi = gain[[2, 3]] - gxy  # inverse
            j, k = ((gxy % 1. < g) & (gxy > 1.)).T
            l, m = ((gxi % 1. < g) & (gxi > 1.)).T
            j = torch.stack((torch.ones_like(j), j, k, l, m))
            # print(j.shape, t.repeat((5, 1, 1)).shape)
            t = t.repeat((5, 1, 1))[j]
            landmark_xy = landmark_xy.repeat((5, 1, 1))[j]
            print("185:", landmark_xy.shape)
            # print(t.shape)
            offsets = (torch.zeros_like(gxy)[None] + off[:, None])[j]
            # print(torch.zeros_like(gxy)[None].shape, off[:, None].shape, (torch.zeros_like(gxy)[None] + off[:, None]).shape)
        else:
            t = targets[0]
            landmark_xy = landmark_xy[0]
            print("No?", t.shape, landmark_xy.shape)
            offsets = 0

        # Define
        b, c = t[:, :2].long().T  # image, class
        # print("image ??", b, c)
        gxy = t[:, 2:4]  # grid xy
        gwh = t[:, 4:6]  # grid wh
        # aaaaa = torch.tensor([0., 0.2, 0.7, 1., 1.2, 4.8])
        # print(aaaaa.long())
        gij = (gxy - offsets).long()
        # print("gxy:", gxy)
        # print("gij:", gij)
        # print("offset:", offsets)
        gi, gj = gij.T  # grid xy indices

        # print(gij.shape, gij.repeat(1,68).shape)
        glandmarks = landmark_xy - gij.repeat(1,5)
        print("208:", glandmarks.shape)
        # print(t[100000000000000])

        # Append
        a = t[:, 6].long()  # anchor indices
        indices.append((b, a, gj.clamp_(0, gain[3] - 1), gi.clamp_(0, gain[2] - 1)))  # image, anchor, grid indices
        tbox.append(torch.cat((gxy - gij, gwh, glandmarks), 1))  # box
        anch.append(anchors[a])  # anchors
        tcls.append(c)  # class

    return tcls, tbox, indices, anch
Пример #14
0
def train(hyp, opt, device, tb_writer=None):
    logger.info(
        colorstr('hyperparameters: ') + ', '.join(f'{k}={v}'
                                                  for k, v in hyp.items()))
    save_dir, epochs, batch_size, total_batch_size, weights, rank = \
        Path(opt.save_dir), opt.epochs, opt.batch_size, opt.total_batch_size, opt.weights, opt.global_rank
    # Directories
    wdir = save_dir / 'weights'
    wdir.mkdir(parents=True, exist_ok=True)  # make dir
    last = wdir / 'last.pt'
    best = wdir / 'best.pt'
    results_file = save_dir / 'results.txt'

    # Save run settings
    with open(save_dir / 'hyp.yaml', 'w') as f:
        yaml.dump(hyp, f, sort_keys=False)
    with open(save_dir / 'opt.yaml', 'w') as f:
        yaml.dump(vars(opt), f, sort_keys=False)

    # Configure
    cuda = device.type != 'cpu'
    init_seeds(2 + rank)
    with open(opt.data) as f:
        data_dict = yaml.load(f, Loader=yaml.SafeLoader)  # data dict

    # Logging- Doing this before checking the dataset. Might update data_dict
    loggers = {'wandb': None}  # loggers dict
    if rank in [-1, 0]:
        opt.hyp = hyp  # add hyperparameters
        run_id = torch.load(weights).get('wandb_id') if weights.endswith(
            '.pt') and os.path.isfile(weights) else None
        wandb_logger = WandbLogger(opt,
                                   Path(opt.save_dir).stem, run_id, data_dict)
        loggers['wandb'] = wandb_logger.wandb
        data_dict = wandb_logger.data_dict
        if wandb_logger.wandb:
            weights, epochs, hyp = opt.weights, opt.epochs, opt.hyp  # WandbLogger might update weights, epochs if resuming

    # Model
    pretrained = weights.endswith('.pt')
    model = SR_Model(opt.cfg, ch=3).to(device)

    # Freeze
    freeze = [
    ]  # parameter names to freeze (full or partial)  'model.%s.' % x for x in range(8)
    for k, v in model.named_parameters():
        v.requires_grad = True  # train all layers
        if any(x in k for x in freeze):
            print('freezing %s' % k)
            v.requires_grad = False

    # Optimizer
    nbs = 64  # nominal batch size
    accumulate = max(round(nbs / total_batch_size),
                     1)  # accumulate loss before optimizing
    hyp['weight_decay'] *= total_batch_size * accumulate / nbs  # scale weight_decay
    logger.info(f"Scaled weight_decay = {hyp['weight_decay']}")

    optimizer = optim.Adam(model.parameters(),
                           lr=hyp['lr0'],
                           betas=(hyp['momentum'], 0.999))
    scheduler = lr_scheduler.StepLR(optimizer,
                                    step_size=hyp['lr_decay'],
                                    gamma=hyp['gamma'])

    # EMA
    ema = ModelEMA(model) if rank in [-1, 0] else None

    # Resume
    start_epoch, best_fitness = 0, 0.0

    # DP mode
    if cuda and rank == -1 and torch.cuda.device_count() > 1:
        model = torch.nn.DataParallel(model)

    # SyncBatchNorm
    if opt.sync_bn and cuda and rank != -1:
        model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model).to(device)
        logger.info('Using SyncBatchNorm()')

    # Trainloader
    # DIV2k dataset
    dataloader, dataset = create_SRdataloader(opt,
                                              train=True,
                                              batch_size=opt.batch_size,
                                              rank=rank,
                                              world_size=opt.world_size,
                                              workers=opt.workers)
    nb = len(dataloader)
    scaler = amp.GradScaler(enabled=cuda)
    scheduler.last_epoch = start_epoch - 1  # do not move
    sr_loss = SR_Loss(opt, device)
    testloader, _ = create_SRdataloader(opt,
                                        train=False,
                                        batch_size=1,
                                        rank=rank,
                                        world_size=opt.world_size,
                                        workers=opt.workers)

    for epoch in range(
            start_epoch, epochs
    ):  # epoch ------------------------------------------------------------------
        model.train()
        mloss = torch.zeros(1, device=device)
        if rank != -1:
            dataloader.sampler.set_epoch(epoch)
        pbar = enumerate(dataloader)
        logger.info(
            ('\n' + '%10s' * 4) % ('Epoch', 'gpu_mem', 'loss', 'img_size'))
        if rank in [-1, 0]:
            pbar = tqdm(pbar, total=nb)  # progress bar
        optimizer.zero_grad()

        for i, (lr, hr, _) in pbar:
            ni = i + nb * epoch  # number integrated batches (since train start)
            idx_scale = opt.scale
            lr = lr.to(device).float()
            hr = hr.to(device).float()

            # Forward
            with amp.autocast(enabled=cuda):
                pred = model(lr)  # forward
                loss = sr_loss(pred, hr)  # loss scaled by batch_size
                if rank != -1:
                    loss *= opt.world_size  # gradient averaged between devices in DDP mode

            # Backward
            scaler.scale(loss).backward()

            # Optimize
            if ni % accumulate == 0:
                scaler.step(optimizer)  # optimizer.step
                scaler.update()
                optimizer.zero_grad()
                if ema:
                    ema.update(model)

            # Print
            if rank in [-1, 0]:
                mloss = (mloss * i + loss) / (i + 1)  # update mean losses
                mem = '%.3gG' % (torch.cuda.memory_reserved() / 1E9
                                 if torch.cuda.is_available() else 0)  # (GB)
                s = ('%10s' * 2 + '%10.4g' * 2) % ('%g/%g' %
                                                   (epoch, epochs - 1), mem,
                                                   mloss, lr.shape[-1])
                pbar.set_description(s)
            # end batch ------------------------------------------------------------------------------------------------
        # end epoch ----------------------------------------------------------------------------------------------------

        # Scheduler
        learning_rate = [x['lr']
                         for x in optimizer.param_groups]  # for tensorboard
        scheduler.step()

        # DDP process 0 or single-GPU
        if rank in [-1, 0]:
            # PSNR
            ema.update_attr(
                model,
                include=['yaml', 'nc', 'hyp', 'gr', 'names', 'class_weights'])
            final_epoch = epoch + 1 == epochs
            model.eval()
            with torch.no_grad():
                for idx_scale, scale in enumerate(opt.scale):
                    eval_acc = 0
                    #testloader.dataset.set_scale(idx_scale)
                    pbar = enumerate(testloader)
                    pbar = tqdm(pbar, total=len(testloader))
                    for idx_img, (lr, hr, filename) in pbar:
                        lr = lr.to(device).float()
                        hr = hr.to(device).float()
                        filename = filename[0]
                        pred = model(lr, idx_scale)
                        pred = quantize(pred, opt.rgb_range)
                        save_list = [pred]
                        eval_acc += calc_psnr(pred, hr, scale, opt.rgb_range)
                        save_list.extend([lr, hr])
                # PSNR 로그로 표시
                results = eval_acc / len(testloader)
                logger.info(f'[DIV2K x{opt.scale}]\tPSNR: {results}')
            # Write
            with open(results_file, 'a') as f:
                f.write(s + '%10.4g' * 1 % (results) +
                        '\n')  # append metrics, val_loss
            # Update best PSNR
            fi = fitness(np.array(results).reshape(
                1, -1))  # weighted combination of [P, R, [email protected], [email protected]]
            if fi > best_fitness:
                best_fitness = fi
        # Save model

        ckpt = {
            'epoch': epoch,
            'best_fitness': best_fitness,
            'training_results': results_file.read_text(),
            'model':
            deepcopy(model.module if is_parallel(model) else model).half(),
            'ema': deepcopy(ema.ema).half(),
            'updates': ema.updates,
            'optimizer': optimizer.state_dict(),
            'wandb_id':
            wandb_logger.wandb_run.id if wandb_logger.wandb else None
        }

        # Save last, best and delete
        torch.save(ckpt, last)
        if best_fitness == fi:
            torch.save(ckpt, best)
        if wandb_logger.wandb:
            if ((epoch + 1) % opt.save_period == 0
                    and not final_epoch) and opt.save_period != -1:
                wandb_logger.log_model(last.parent,
                                       opt,
                                       epoch,
                                       fi,
                                       best_model=best_fitness == fi)
        del ckpt
Пример #15
0
def train(hyp, opt, device):
    save_dir, epochs, batch_size, total_batch_size, weights, rank = \
    Path(opt.save_dir), opt.epochs, opt.batch_size, opt.total_batch_size, opt.weights, opt.global_rank
    do_semi = opt.do_semi
    # Directories
    wdir = save_dir / 'weights'
    wdir.mkdir(parents=True, exist_ok=True)
    last = wdir / 'last.pt'
    best = wdir / 'best.pt'
    results_file = save_dir / 'results.txt'

    # Save run settings
    with open(save_dir / 'hyp.yaml', 'w') as f:
        yaml.dump(hyp, f, sort_keys=False)
    with open(save_dir / 'opt.yaml', 'w') as f:
        yaml.dump(vars(opt), f, sort_keys=False)

    # Configure
    plots = not opt.evolve  #create plots
    cuda = device.type != 'cpu'
    init_seeds(2 + rank)
    with open(opt.data) as f:
        data_dict = yaml.load(f, Loader=yaml.SafeLoader)
    nc = 1 if opt.single_cls else int(data_dict['nc'])  #number of classes
    names = ['item'] if opt.single_cls and len(
        data_dict['names']) != 1 else data_dict['names']
    assert len(names) == nc, '%g names found for nc=%g dataset in %s' % (
        len(names), nc, opt.data)

    # Model
    pretrained = weights.endswith('.pt')
    if pretrained:
        with torch_distributed_zero_first(rank):
            attempt_download(weights)  # download if not found locally
        ckpt = torch.load(weights, map_location=device)  #load checkpoint
        model = Model(opt.cfg or ckpt['model'].yaml,
                      ch=3,
                      nc=nc,
                      anchors=hyp.get('anchors')).to(device)  #create
        exclude = [
            'anchor'
        ] if (opt.cfg or hyp.get('anchors')) and not opt.resume else [
        ]  #exclude keys
        state_dict = ckpt['model'].float().state_dict()  # to FP32
        state_dict = intersect_dicts(state_dict,
                                     model.state_dict(),
                                     exclude=exclude)  #intersect
        model.load_state_dict(state_dict, strict=False)  #load

    else:
        model = Model(opt.cfg, ch=3, nc=nc,
                      anchors=hyp.get('anchors')).to(device)

    with torch_distributed_zero_first(rank):
        check_dataset(data_dict)  #check
    train_path = data_dict['train']
    test_path = data_dict['val']

    # Optimizer
    nbs = 64
    accumulate = max(round(nbs / total_batch_size),
                     1)  # accumulate loss before optimizing
    hyp['weight_decay'] *= total_batch_size * accumulate / nbs

    pg0, pg1, pg2 = [], [], []  # optimizer parameter groups
    for k, v in model.named_modules():
        if hasattr(v, 'bias') and isinstance(v.bias, nn.Parameter):
            pg2.append(v.bias)  # biases
        if isinstance(v, nn.BatchNorm2d):
            pg0.append(v.weight)  # no decay
        elif hasattr(v, 'weight') and isinstance(v.weight, nn.Parameter):
            pg1.append(v.weight)  # apply dacay

    if opt.adam:
        optimizer = optim.Adam(pg0,
                               lr=hyp['lr0'],
                               betas=(hyp['momentum'],
                                      0.999))  # adjust betal to momentum
    else:
        optimizer = optim.SGD(pg0,
                              lr=hyp['lr0'],
                              momentum=hyp['momentum'],
                              nesterov=True)

    optimizer.add_param_group({
        'params': pg1,
        'weight_decay': hyp['weight_decay']
    })  # add pg1 with weight_decay
    optimizer.add_param_group({'params': pg2})  # add pg2 (biases)
    del pg0, pg1, pg2

    if opt.linear_lr:
        lf = lambda x: (1 - x / (epochs - 1)) * (1.0 - hyp['lrf']) + hyp[
            'lrf']  # linear
    else:
        lf = one_cycle(1, hyp['lrf'], epochs)
    scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf)

    # EMA
    ema = ModelEMA(model) if rank in [-1, 0] else None

    # Resume
    start_epoch, best_fitness = 0, 0.0

    if pretrained:
        # optimizer
        if ckpt['optimizer'] is not None:
            optimizer.load_state_dict(ckpt['optimizer'])
            best_fitness = ckpt['best_fitness']

        # EMA
        if ema and ckpt.get('ema'):
            ema.ema.load_state_dict(ckpt['ema'].float().state_dict())
            ema.updates = ckpt['updates']

        # Results
        if ckpt.get('training_results') is not None:
            results_file.write_text(
                ckpt['training_results'])  # write results.txt

        # Epochs
        start_epoch = ckpt['epoch'] + 1
        if opt.resume:
            assert start_epoch > 0, '%s training to %g epochs is finished, nothing to resume.' % (
                weight, epochs)
        if epochs < start_epoch:
            epochs += ckpt['epoch']
        del ckpt, state_dict

        # Image sizes
        gs = max(int(model.stride.max()), 32)  # grid size (max stride)
        nl = model.model[
            -1].nl  # number of detection layer (used for scaling hyp['obj])
        imgsz, imgsz_test = [check_img_size(x, gs) for x in opt.img_size
                             ]  # verify imgsz are gs-multiples

        # DP mode
        if cuda and rank == -1 and torch.cuda.device_count() > 1:
            model = torch.nn.DataParallel(model)

        # SyncBatchNorm
        if opt.sync_bn and cuda and rank != -1:
            model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model).to(
                device)

        # Trainloader
    if do_semi:
        dataloader, dataset, unlabeldataloader = create_dataloader(
            train_path,
            imgsz,
            batch_size,
            gs,
            opt,
            hyp=hyp,
            augment=True,
            cache=opt.cache_images,
            rect=opt.rect,
            rank=rank,
            world_size=opt.world_size,
            workers=opt.workers,
            image_weights=opt.image_weights,
            quad=opt.quad,
            prefix=colorstr('train: '),
            do_semi=opt.do_semi)
    else:
        dataloader, dataset = create_dataloader(
            train_path,
            imgsz,
            batch_size,
            gs,
            opt,
            hyp=hyp,
            augment=True,
            cache=opt.cache_images,
            rect=opt.rect,
            rank=rank,
            world_size=opt.world_size,
            workers=opt.workers,
            image_weights=opt.image_weights,
            quad=opt.quad,
            prefix=colorstr('train: '),
            do_semi=opt.do_semi)

    # Train teacher model
    mlc = np.concatenate(dataset.labels, 0)[:, 0].max()  # max label class
    nb = len(dataloader)  # number of batches

    assert mlc < nc, 'Label class %g exceeds nc=%g in %s. Possible class labels are 0-%g' % (
        mlc, nc, opt.data, nc - 1)

    # process 0
    if rank in [-1, 0]:
        testloader = create_dataloader(
            test_path,
            imgsz_test,
            batch_size * 2,
            gs,
            opt,  # testloader
            hyp=hyp,
            cache=opt.cache_images and not opt.notest,
            rect=True,
            rank=-1,
            world_size=opt.world_size,
            workers=opt.workers,
            pad=0.5,
            prefix=colorstr('val: '),
            do_semi=False)[0]

        if not opt.resume:
            labels = np.concatenate(dataset.labels, 0)
            c = torch.tensor(labels[:, 0])  # classes
            # Anchors
            if not opt.noautoanchor:
                check_anchors(dataset,
                              model=model,
                              thr=hyp['anchor_t'],
                              imgsz=imgsz)
            model.half().float()  # pre-reduce anchor precision

    # DDP mode
    if cuda and rank != 1:
        model = DDP(model,
                    device_ids=[opt.local_rank],
                    output_device=opt.local_rank,
                    find_unused_parameters=any(
                        isinstance(layer, nn.MultiheadAttention)
                        for layer in model.modules()))

    # Model parameters
    hyp['box'] *= 3. / nl  # scale to layers
    hyp['cls'] *= nc / 80. * 3. / nl  # scale to classes and layers
    hyp['obj'] *= (imgsz / 640)**2 * 3. / nl  # scale to image size and layers
    hyp['label_smoothing'] = opt.label_smoothing
    model.nc = nc  # attach number of classes to model
    model.hyp = hyp  # attach hyperparameters to model
    model.gr = 1.0  # iou loss ratio (obj_loss = 1.0 or iou)
    model.class_weights = labels_to_class_weights(
        dataset.labels, nc).to(device) * nc  # attach class weights
    model.names = names

    # Train teacher model --> burn in
    t0 = time.time()
    nw = max(round(hyp['warmup_epochs'] * nb),
             1000)  # number of warmup iterations, max(3 epochs, 1k iterations)
    # nw = min(nw, (epochs - start_epoch) / 2 * nb)  # limit warmup to < 1/2 of training
    maps = np.zeros(nc)  # mAP per class
    results = (0, 0, 0, 0, 0, 0, 0
               )  # P, R, [email protected], [email protected], val_loss(box, obj, cls)
    scheduler.last_epoch = start_epoch - 1  # do not move
    scaler = amp.GradScaler(enabled=cuda)
    compute_loss = ComputeLoss(model)  # init loss class
    burnin_epochs = epochs / 2

    # burn in
    for epoch in range(start_epoch,
                       burnin_epochs):  # epoch-------------------------
        model.train()
        nb = len(dataloader)
        mloss = torch.zeros(4, device=device)  # mean loss
        if rank != -1:
            dataloader.sampler.set_epoch(epoch)
        pbar = enumerate(dataloader)

        if rank in [-1, 0]:
            pbar = tqdm(pbar, total=nb)
        optimizer.zero_grad()
        for i, (imgs, targets, paths, _) in pbar:
            ni = i + nb * epoch  # number integrated batches (since train start)
            imgs = imgs.to(device, non_blocking=True).float(
            ) / 255.0  # uint8 to float32, 0-255 to 0.0-1.0

            # Warm up
            if ni <= [0, nw]:
                xi = [0, nw]
                accumulate = max(
                    1, np.interp(ni, xi, [1, nbs / total_batch_size].round()))
                for j, x in enumerate(optimizer.param_groups):
                    # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
                    x['lr'] = np.interp(ni, xi, [
                        hyp['warmup_bias_lr'] if j == 2 else 0.0,
                        x['initial_lr'] * lf(epoch)
                    ])
                    if 'momentum' in x:
                        x['momentum'] = np.interp(
                            ni, xi, [hyp['warmup_momentum'], hyp['momentum']])

            # Forward
            with amp.autocast(enabled=cuda):
                pred = model(imgs)  # forward
                loss, loss_item = compute_loss(
                    pred, targets.to(device))  # loss scaled by batch_size
                if rank != -1:
                    loss *= opt.world_size  # gradient averaged between device in DDP mode
                if opt.quad:
                    loss *= 4.

            # Backward
            scaler.scale(loss).backward()

            # Optimize
            if ni % accumulate == 0:
                scaler.step(optimizer)
                scaler.update()
                optimizer.zero_grad()
                if ema:
                    ema.update(model)

            # print
            if rank in [-1, 0]:
                mloss = (mloss * i + loss_item) / (i + 1)  # update mean losses
                mem = '%.3gG' % (torch.cuda.memory_reserved() / 1E9
                                 if torch.cuda.is_available() else 0)  # (GB)
                s = ('%10s' * 2 +
                     '%10.4g' * 6) % ('%g/%g' % (epoch, epochs - 1), mem,
                                      *mloss, targets.shape[0], imgs.shape[-1])
                pbar.set_description(s)

        scheduler.step()

        # DDP process 0 or single-GPU
        if rank in [-1, 0]:
            # mAP
            ema.update_attr(model,
                            include=[
                                'yaml', 'nc', 'hyp', 'gr', 'names', 'stride',
                                'class_weights'
                            ])
            final_epoch = epoch + 1 == epochs
            if not opt.notest or final_epoch:  # Calculate mAP

                results, maps, times = test.test(data_dict,
                                                 batch_size=batch_size * 2,
                                                 imgsz=imgsz_test,
                                                 model=ema.ema,
                                                 single_cls=opt.single_cls,
                                                 dataloader=testloader,
                                                 save_dir=save_dir,
                                                 verbose=nc < 50
                                                 and final_epoch,
                                                 plots=plots and final_epoch,
                                                 compute_loss=compute_loss)

        fi = fitness(np.array(results).reshape(
            1, -1))  # weighted combination of [P, R, mAP@50, [email protected]]
        if fi > best_fitness:
            best_fitness = fi

        if (not opt.nosave) or (final_epoch and not opt.evolve):  # if save
            ckpt = {
                'epoch':
                epoch,
                'best_fitness':
                best_fitness,
                'training_results':
                results_file.read_text(),
                'model':
                deepcopy(model.module if is_parallel(model) else model).half(),
                'ema':
                deepcopy(ema.ema).half(),
                'updates':
                ema.updates,
                'optimizer':
                optimizer.state_dict()
            }
            if best_fitness == fi:
                torch.save(ckpt, best)
            del ckpt

        # end epoch ----------------------------------------------------------------------------
    # end warm up

    # get persudo label
    # STAC
    # first apply weak augmentation on unlabeled dataset then use teacher net to predict the persudo labels
    # Then apply strong augmentation on unlabeled dataset, use student net to get the logists and compute the unlabeled loss.

    model.eval()
    img = []
    target = []
    Path = []
    imgsz = opt.img_size
    for idx, batch in tqdm(enumerate(unlabeldataloader),
                           total=len(unlabeldataloader)):
        imgs0, _, path, _ = batch  # from uint8 to float16

        with torch.no_grad():
            pred = model(imgs0.to(device, non_blocking=True).float() /
                         255.0)[0]

        gn = torch.tensor(imgs0.shape)[[3, 2, 3, 2]]
        pred = non_max_suppression(pred,
                                   opt.conf_thres,
                                   opt.iou_thres,
                                   classes=opt.classes,
                                   agnostic=opt.agnostic_nms)

        for index, pre in enumerate(pred):
            predict_number = len(pre)
            if predict_number == 0:
                continue
            Class = pre[:, 5].view(predict_number, 1).cpu()
            XYWH = (xyxy2xywh(pre[:, :4])).cpu()
            XYWH /= gn
            pre = torch.cat((torch.zeros(predict_number, 1), Class, XYWH),
                            dim=1)
            img.append(imgs0[index])
            target.append(pre)
            Path.append(path[index])

    unlabeldataset = semiDataset(img, target, Path)
    del img, targets, Path
    model.train()
Пример #16
0
def build_targets(prediction, targets, model):
    """
    Build targets for compute_loss()

    Args:
        prediction:
        targets: image, class, x, y, w, h
        model:

    Returns:
        clsT:
        boxT:
        indices:
        anchor:
    """
    clsT, boxT, indices, anchor = [], [], [], []
    gain = torch.ones(7,
                      device=targets.device)  # normalized to grid space gain

    det = model.module.model[-1] if is_parallel(model) else model.model[
        -1]  # Detect() module
    anchorNum, targetNum = det.na, targets.shape[
        0]  # number of anchors, targets
    ai = torch.arange(anchorNum, device=targets.device).float().view(
        anchorNum, 1).repeat(1, targetNum)
    targets = torch.cat((targets.repeat(anchorNum, 1, 1), ai[:, :, None]),
                        2)  # append anchor indices

    bias = 0.5  # ↓ 表示5个偏移,原点不动、往右、往下、往左、往上
    off = torch.tensor([
        [0, 0],
        [1, 0],
        [0, 1],
        [-1, 0],
        [0, -1],
    ],
                       device=targets.device).float() * bias  # offsets

    for i in range(det.nl):
        anchors = det.anchors[i]
        gain[2:6] = torch.tensor(prediction[i].shape)[[3, 2, 3,
                                                       2]]  # xyxy gain

        # Match targets to anchors
        t = targets * gain  # 将 gt 的 cx, cy, w, h 换算到当前 feature map 对应尺寸和 anchor 匹配
        if targetNum:
            # Matches
            radio = t[:, :, 4:6] / anchors[:, None]
            j = torch.max(
                radio, 1. / radio).max(2)[0] < model.hyp['anchor_t']  # compare
            t = t[j]  # filter

            # Offsets
            gxy = t[:, 2:4]  # grid xy
            gxi = gain[[2, 3]] - gxy  # inverse
            j, k = ((gxy % 1. < bias) & (gxy > 1.)).T
            l, m = ((gxi % 1. < bias) & (gxi > 1.)).T
            j = torch.stack((torch.ones_like(j), j, k, l, m))
            t = t.repeat((5, 1, 1))[j]
            offsets = (torch.zeros_like(gxy)[None] + off[:, None])[j]
        else:
            t = targets[0]
            offsets = 0

        # Define
        b, c = t[:, :2].long().T  # image, class
        gxy = t[:, 2:4]  # grid xy
        gwh = t[:, 4:6]  # grid wh
        gij = (gxy - offsets).long()
        gi, gj = gij.T  # grid xy indices

        # Append
        a = t[:, 6].long()  # anchor indices
        indices.append((b, a, gj.clamp_(0, gain[3] - 1),
                        gi.clamp_(0,
                                  gain[2] - 1)))  # image, anchor, grid indices
        boxT.append(torch.cat((gxy - gij, gwh), 1))  # box
        anchor.append(anchors[a])  # anchors
        clsT.append(c)  # class

    return clsT, boxT, indices, anchor
Пример #17
0
def build_targets(p, targets, model):
    # Build targets for compute_loss(), input targets(image,class,x,y,w,h)
    det = model.module.model[-1] if is_parallel(model) else model.model[
        -1]  # Detect() module
    na, nt = det.na, targets.shape[0]  # number of anchors, targets
    tcls, tbox, indices, anch, landmarks, lmks_mask = [], [], [], [], [], []
    #gain = torch.ones(7, device=targets.device)  # normalized to gridspace gain
    gain = torch.ones(15, device=targets.device)
    ai = torch.arange(na, device=targets.device).float().view(na, 1).repeat(
        1, nt)  # same as .repeat_interleave(nt)
    targets = torch.cat((targets.repeat(na, 1, 1), ai[:, :, None]),
                        2)  # append anchor indices

    g = 0.5  # bias
    off = torch.tensor(
        [
            [0, 0],
            [1, 0],
            [0, 1],
            [-1, 0],
            [0, -1],  # j,k,l,m
            # [1, 1], [1, -1], [-1, 1], [-1, -1],  # jk,jm,lk,lm
        ],
        device=targets.device).float() * g  # offsets

    for i in range(det.nl):
        anchors = det.anchors[i]
        gain[2:6] = torch.tensor(p[i].shape)[[3, 2, 3, 2]]  # xyxy gain
        #landmarks 10
        gain[6:14] = torch.tensor(p[i].shape)[[3, 2, 3, 2, 3, 2, 3,
                                               2]]  # xyxy gain

        # Match targets to anchors
        t = targets * gain
        if nt:
            # Matches
            r = t[:, :, 4:6] / anchors[:, None]  # wh ratio
            j = torch.max(r,
                          1. / r).max(2)[0] < model.hyp['anchor_t']  # compare
            # j = wh_iou(anchors, t[:, 4:6]) > model.hyp['iou_t']  # iou(3,n)=wh_iou(anchors(3,2), gwh(n,2))
            t = t[j]  # filter

            # Offsets
            gxy = t[:, 2:4]  # grid xy
            gxi = gain[[2, 3]] - gxy  # inverse
            j, k = ((gxy % 1. < g) & (gxy > 1.)).T
            l, m = ((gxi % 1. < g) & (gxi > 1.)).T
            j = torch.stack((torch.ones_like(j), j, k, l, m))
            t = t.repeat((5, 1, 1))[j]
            offsets = (torch.zeros_like(gxy)[None] + off[:, None])[j]
        else:
            t = targets[0]
            offsets = 0

        # Define
        b, c = t[:, :2].long().T  # image, class
        gxy = t[:, 2:4]  # grid xy
        gwh = t[:, 4:6]  # grid wh
        gij = (gxy - offsets).long()
        gi, gj = gij.T  # grid xy indices

        # Append
        a = t[:, 14].long()  # anchor indices
        indices.append((b, a, gj.clamp_(0, gain[3] - 1),
                        gi.clamp_(0,
                                  gain[2] - 1)))  # image, anchor, grid indices
        tbox.append(torch.cat((gxy - gij, gwh), 1))  # box
        anch.append(anchors[a])  # anchors
        tcls.append(c)  # class

        #landmarks
        lks = t[:, 6:14]
        #lks_mask = lks > 0
        #lks_mask = lks_mask.float()
        lks_mask = torch.where(lks < 0, torch.full_like(lks, 0.),
                               torch.full_like(lks, 1.0))

        #应该是关键点的坐标除以anch的宽高才对,便于模型学习。使用gwh会导致不同关键点的编码不同,没有统一的参考标准

        lks[:, [0, 1]] = (lks[:, [0, 1]] - gij)
        lks[:, [2, 3]] = (lks[:, [2, 3]] - gij)
        lks[:, [4, 5]] = (lks[:, [4, 5]] - gij)
        lks[:, [6, 7]] = (lks[:, [6, 7]] - gij)
        '''
        #anch_w = torch.ones(5, device=targets.device).fill_(anchors[0][0])
        #anch_wh = torch.ones(5, device=targets.device)
        anch_f_0 = (a == 0).unsqueeze(1).repeat(1, 5)
        anch_f_1 = (a == 1).unsqueeze(1).repeat(1, 5)
        anch_f_2 = (a == 2).unsqueeze(1).repeat(1, 5)
        lks[:, [0, 2, 4, 6, 8]] = torch.where(anch_f_0, lks[:, [0, 2, 4, 6, 8]] / anchors[0][0], lks[:, [0, 2, 4, 6, 8]])
        lks[:, [0, 2, 4, 6, 8]] = torch.where(anch_f_1, lks[:, [0, 2, 4, 6, 8]] / anchors[1][0], lks[:, [0, 2, 4, 6, 8]])
        lks[:, [0, 2, 4, 6, 8]] = torch.where(anch_f_2, lks[:, [0, 2, 4, 6, 8]] / anchors[2][0], lks[:, [0, 2, 4, 6, 8]])

        lks[:, [1, 3, 5, 7, 9]] = torch.where(anch_f_0, lks[:, [1, 3, 5, 7, 9]] / anchors[0][1], lks[:, [1, 3, 5, 7, 9]])
        lks[:, [1, 3, 5, 7, 9]] = torch.where(anch_f_1, lks[:, [1, 3, 5, 7, 9]] / anchors[1][1], lks[:, [1, 3, 5, 7, 9]])
        lks[:, [1, 3, 5, 7, 9]] = torch.where(anch_f_2, lks[:, [1, 3, 5, 7, 9]] / anchors[2][1], lks[:, [1, 3, 5, 7, 9]])

        #new_lks = lks[lks_mask>0]
        #print('new_lks:   min --- ', torch.min(new_lks), '  max --- ', torch.max(new_lks))
        
        lks_mask_1 = torch.where(lks < -3, torch.full_like(lks, 0.), torch.full_like(lks, 1.0))
        lks_mask_2 = torch.where(lks > 3, torch.full_like(lks, 0.), torch.full_like(lks, 1.0))

        lks_mask_new = lks_mask * lks_mask_1 * lks_mask_2
        lks_mask_new[:, 0] = lks_mask_new[:, 0] * lks_mask_new[:, 1]
        lks_mask_new[:, 1] = lks_mask_new[:, 0] * lks_mask_new[:, 1]
        lks_mask_new[:, 2] = lks_mask_new[:, 2] * lks_mask_new[:, 3]
        lks_mask_new[:, 3] = lks_mask_new[:, 2] * lks_mask_new[:, 3]
        lks_mask_new[:, 4] = lks_mask_new[:, 4] * lks_mask_new[:, 5]
        lks_mask_new[:, 5] = lks_mask_new[:, 4] * lks_mask_new[:, 5]
        lks_mask_new[:, 6] = lks_mask_new[:, 6] * lks_mask_new[:, 7]
        lks_mask_new[:, 7] = lks_mask_new[:, 6] * lks_mask_new[:, 7]
        lks_mask_new[:, 8] = lks_mask_new[:, 8] * lks_mask_new[:, 9]
        lks_mask_new[:, 9] = lks_mask_new[:, 8] * lks_mask_new[:, 9]
        '''
        lks_mask_new = lks_mask
        lmks_mask.append(lks_mask_new)
        landmarks.append(lks)
        #print('lks: ',  lks.size())

    return tcls, tbox, indices, anch, landmarks, lmks_mask
Пример #18
0
def build_targets_agument(p, targets, model):
    # Build targets for compute_loss(), input targets(image,class,x,y,w,h)
    det = model.module.model[-1] if is_parallel(model) else model.model[
        -1]  # Detect() module
    nt = targets.shape[0]  # number of anchors, targets
    tcls, tbox, indices, anch = [], [], [], []
    gain = torch.ones(6, device=targets.device)  # normalized to gridspace gain

    g = 0.5  # bias
    off = torch.tensor(
        [
            [0, 0],
            [1, 0],
            [0, 1],
            [-1, 0],
            [0, -1],  # j,k,l,m
            # [1, 1], [1, -1], [-1, 1], [-1, -1],  # jk,jm,lk,lm
        ],
        device=targets.device).float() * g  # offsets
    threshold = [0.25, 0.5]

    for i in range(det.nl):
        if i == 0:
            gain[2:6] = torch.tensor(p[i].shape)[[2, 1, 2, 1]]  # xyxy gain

            # Match targets to anchors
            t = targets * gain
            j = torch.max(t[..., 4:6], 1)[0] < threshold[i] * p[i].shape[2]
            t = t[j]  # filter

            gxy = t[:, 2:4]  # grid xy
            gxi = gain[[2, 3]] - gxy  # inverse
            j, k = ((gxy % 1. < g) & (gxy > 1.)).T
            l, m = ((gxi % 1. < g) & (gxi > 1.)).T
            j = torch.stack((torch.ones_like(j), j, k, l, m))
            t = t.repeat((off.shape[0], 1, 1))[j]
            offsets = (torch.zeros_like(gxy)[None] + off[:, None])[j]

            b, c = t[:, :2].long().T  # image, class
            gxy = t[:, 2:4]  # grid xy
            gwh = t[:, 4:6]  # grid wh
            gij = (gxy - offsets).long()
            gi, gj = gij.T  # grid xy indices

            # b, c = t[:, :2].long().T  # image, class
            # gxy = t[:, 2:4]  # grid xy
            # gxy_ = torch.round(gxy-0.5)
            # gwh = t[:, 4:6]  # grid wh
            # gij = gxy_.long()
            # gi, gj = gij.T  # grid xy indices

            # Append
            indices.append(
                (b, gj.clamp_(0, gain[3] - 1),
                 gi.clamp_(0, gain[2] - 1)))  # image, anchor, grid indices
            tbox.append(torch.cat((gxy - gij, gwh), 1))  # box
            tcls.append(c)  # class
        if i == 1:
            gain[2:6] = torch.tensor(p[i].shape)[[2, 1, 2, 1]]  # xyxy gain
            # Match targets to anchors
            t = targets * gain
            j = torch.max(t[..., 4:6], 1)[0] > threshold[0] * p[i].shape[2]
            j1_ = torch.max(t[..., 4:6], 1)[0] < threshold[1] * p[i].shape[2]
            j = j & j1_
            t = t[j]  # filter

            gxy = t[:, 2:4]  # grid xy
            gxi = gain[[2, 3]] - gxy  # inverse
            j, k = ((gxy % 1. < g) & (gxy > 1.)).T
            l, m = ((gxi % 1. < g) & (gxi > 1.)).T
            j = torch.stack((torch.ones_like(j), j, k, l, m))
            t = t.repeat((off.shape[0], 1, 1))[j]
            offsets = (torch.zeros_like(gxy)[None] + off[:, None])[j]

            b, c = t[:, :2].long().T  # image, class
            gxy = t[:, 2:4]  # grid xy
            gwh = t[:, 4:6]  # grid wh
            gij = (gxy - offsets).long()
            gi, gj = gij.T  # grid xy indices

            # Append
            indices.append(
                (b, gj.clamp_(0, gain[3] - 1),
                 gi.clamp_(0, gain[2] - 1)))  # image, anchor, grid indices
            tbox.append(torch.cat((gxy - gij, gwh), 1))  # box
            tcls.append(c)  # class

        if i == 2:
            gain[2:6] = torch.tensor(p[i].shape)[[2, 1, 2, 1]]  # xyxy gain

            # Match targets to anchors
            t = targets * gain
            # print(t[...,4:6].shape)
            j = torch.max(t[..., 4:6], 1)[0] > threshold[1] * p[i].shape[2]

            gxy = t[:, 2:4]  # grid xy
            gxi = gain[[2, 3]] - gxy  # inverse
            j, k = ((gxy % 1. < g) & (gxy > 1.)).T
            l, m = ((gxi % 1. < g) & (gxi > 1.)).T
            j = torch.stack((torch.ones_like(j), j, k, l, m))
            t = t.repeat((off.shape[0], 1, 1))[j]
            offsets = (torch.zeros_like(gxy)[None] + off[:, None])[j]

            b, c = t[:, :2].long().T  # image, class
            gxy = t[:, 2:4]  # grid xy
            gwh = t[:, 4:6]  # grid wh
            gij = (gxy - offsets).long()
            gi, gj = gij.T  # grid xy indices

            # Append
            indices.append(
                (b, gj.clamp_(0, gain[3] - 1),
                 gi.clamp_(0, gain[2] - 1)))  # image, anchor, grid indices
            tbox.append(torch.cat((gxy - gij, gwh), 1))  # box
            tcls.append(c)  # class

    return tcls, tbox, indices, anch
Пример #19
0
def train(hyp, opt, device, tb_writer=None):
    logger.info(
        colorstr('hyperparameters: ') + ', '.join(f'{k}={v}'
                                                  for k, v in hyp.items()))
    print(
        colorstr('hyperparameters: ') + ', '.join(f'{k}={v}'
                                                  for k, v in hyp.items()))
    save_dir, epochs, batch_size, total_batch_size, weights, rank = \
        Path(opt.save_dir), opt.epochs, opt.batch_size, opt.total_batch_size, opt.weights, opt.global_rank

    # Directories
    wdir = save_dir / 'weights'
    wdir.mkdir(parents=True, exist_ok=True)  # make dir
    last = wdir / 'last.pt'
    best = wdir / 'best.pt'
    results_file = save_dir / 'results.txt'

    # Save run settings
    with open(save_dir / 'hyp.yaml', 'w') as f:
        yaml.dump(hyp, f, sort_keys=False)
    with open(save_dir / 'opt.yaml', 'w') as f:
        yaml.dump(vars(opt), f, sort_keys=False)

    shutil.copyfile(os.path.basename(__file__),
                    os.path.join(str(save_dir), os.path.basename(__file__)))
    # Configure
    plots = not opt.evolve  # create plots
    cuda = device.type != 'cpu'
    init_seeds(2 + rank)
    with open(opt.data) as f:
        data_dict = yaml.load(f, Loader=yaml.SafeLoader)  # data dict
    is_coco = opt.data.endswith('coco.yaml')

    # Logging- Doing this before checking the dataset. Might update data_dict
    loggers = {'wandb': None}  # loggers dict
    if rank in [-1, 0]:
        opt.hyp = hyp  # add hyperparameters
        run_id = torch.load(weights).get('wandb_id') if weights.endswith(
            '.pt') and os.path.isfile(weights) else None
        wandb_logger = WandbLogger(opt,
                                   Path(opt.save_dir).stem, run_id, data_dict)
        loggers['wandb'] = wandb_logger.wandb
        data_dict = wandb_logger.data_dict
        if wandb_logger.wandb:
            weights, epochs, hyp = opt.weights, opt.epochs, opt.hyp  # WandbLogger might update weights, epochs if resuming

    nc = 1 if opt.single_cls else int(data_dict['nc'])  # number of classes
    names = ['item'] if opt.single_cls and len(
        data_dict['names']) != 1 else data_dict['names']  # class names
    assert len(names) == nc, '%g names found for nc=%g dataset in %s' % (
        len(names), nc, opt.data)  # check

    # Model
    pretrained = weights.endswith('.pt')

    if 'yolov5' in opt.cfg:
        model = V5Centernet(opt.cfg,
                            num_classes=nc,
                            pretrained=weights,
                            device=device).to(device)
    else:
        model = V5Dual(opt.cfg,
                       num_classes=nc,
                       pretrained=weights,
                       device=device).to(device)

    # model = FlexibleModel(model_config=opt.cfg).to(device)

    if pretrained:
        # weights = torch.load(pretrained)
        # self.model.load_state_dict(weights)
        exclude = []  # exclude keys
        ckpt = torch.load(weights, map_location=device)  # load checkpoint
        state_dict = ckpt['model'].float().state_dict()  # to FP32
        state_dict = intersect_dicts(state_dict,
                                     model.state_dict(),
                                     exclude=exclude)  # intersect
        model.load_state_dict(state_dict, strict=False)  # load
        print('Transferred %g/%g items from %s' %
              (len(state_dict), len(model.state_dict()), weights))  # report

        del ckpt, state_dict

    # segLoss = FocalLoss()
    segLoss = nn.MSELoss()

    with torch_distributed_zero_first(rank):
        check_dataset(data_dict)  # check
    train_path = data_dict['train']
    test_path = data_dict['val']

    # Freeze
    freeze = []  # parameter names to freeze (full or partial)
    for k, v in model.named_parameters():
        v.requires_grad = True  # train all layers
        if any(x in k for x in freeze):
            print('freezing %s' % k)
            v.requires_grad = False

    # Optimizer
    nbs = 64  # nominal batch size
    accumulate = max(round(nbs / total_batch_size),
                     1)  # accumulate loss before optimizing
    hyp['weight_decay'] *= total_batch_size * accumulate / nbs  # scale weight_decay
    logger.info(f"Scaled weight_decay = {hyp['weight_decay']}")
    print(f"Scaled weight_decay = {hyp['weight_decay']}")

    pg0, pg1, pg2 = [], [], []  # optimizer parameter groups
    for k, v in model.named_modules():
        if hasattr(v, 'bias') and isinstance(v.bias, nn.Parameter):
            pg2.append(v.bias)  # biases
        if isinstance(v, nn.BatchNorm2d):
            pg0.append(v.weight)  # no decay
        elif hasattr(v, 'weight') and isinstance(v.weight, nn.Parameter):
            pg1.append(v.weight)  # apply decay

    if opt.adam:
        optimizer = optim.Adam(pg0,
                               lr=hyp['lr0'],
                               betas=(hyp['momentum'],
                                      0.999))  # adjust beta1 to momentum
    else:
        optimizer = optim.SGD(pg0,
                              lr=hyp['lr0'],
                              momentum=hyp['momentum'],
                              nesterov=True)

    # optimizer = MADGRAD(pg0,  lr=hyp['lr0'], momentum=hyp['momentum'])

    optimizer.add_param_group({
        'params': pg1,
        'weight_decay': hyp['weight_decay']
    })  # add pg1 with weight_decay
    optimizer.add_param_group({'params': pg2})  # add pg2 (biases)
    logger.info('Optimizer groups: %g .bias, %g conv.weight, %g other' %
                (len(pg2), len(pg1), len(pg0)))
    print('Optimizer groups: %g .bias, %g conv.weight, %g other' %
          (len(pg2), len(pg1), len(pg0)))
    del pg0, pg1, pg2

    # Scheduler https://arxiv.org/pdf/1812.01187.pdf
    # https://pytorch.org/docs/stable/_modules/torch/optim/lr_scheduler.html#OneCycleLR
    if opt.linear_lr:
        lf = lambda x: (1 - x / (epochs - 1)) * (1.0 - hyp['lrf']) + hyp[
            'lrf']  # linear
    else:
        lf = one_cycle(1, hyp['lrf'], epochs)  # cosine 1->hyp['lrf']
    scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf)
    # plot_lr_scheduler(optimizer, scheduler, epochs)

    # EMA
    ema = ModelEMA(model) if rank in [-1, 0] else None

    # Resume
    start_epoch, best_fitness = 0, 0.0
    # if pretrained:
    if 0:
        # Optimizer
        if ckpt['optimizer'] is not None:
            optimizer.load_state_dict(ckpt['optimizer'])
            best_fitness = ckpt['best_fitness']

        # EMA
        if ema and ckpt.get('ema'):
            ema.ema.load_state_dict(ckpt['ema'].float().state_dict())
            ema.updates = ckpt['updates']

        # Results
        if ckpt.get('training_results') is not None:
            results_file.write_text(
                ckpt['training_results'])  # write results.txt

        # Epochs
        start_epoch = ckpt['epoch'] + 1
        if opt.resume:
            assert start_epoch > 0, '%s training to %g epochs is finished, nothing to resume.' % (
                weights, epochs)
        if epochs < start_epoch:
            logger.info(
                '%s has been trained for %g epochs. Fine-tuning for %g additional epochs.'
                % (weights, ckpt['epoch'], epochs))
            print(
                '%s has been trained for %g epochs. Fine-tuning for %g additional epochs.'
                % (weights, ckpt['epoch'], epochs))
            epochs += ckpt['epoch']  # finetune additional epochs

        del ckpt, state_dict

    # Image sizes
    if hasattr(model, 'model'):
        gs = max(int(model.model.stride.max()), 32)  # grid size (max stride)
        try:
            nl = model.model.model[-1].nl
        except:
            nl = model.model.detection.nl  # number of detection layers (used for scaling hyp['obj'])
    else:
        gs = max(int(model.stride.max()), 32)  # grid size (max stride)
        nl = model.detection.nl  # number of detection layers (used for scaling hyp['obj'])

    imgsz, imgsz_test = [check_img_size(x, gs) for x in opt.img_size
                         ]  # verify imgsz are gs-multiples

    # DP mode
    if cuda and rank == -1 and torch.cuda.device_count() > 1:
        model = torch.nn.DataParallel(model)

    # SyncBatchNorm
    if opt.sync_bn and cuda and rank != -1:
        model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model).to(device)
        logger.info('Using SyncBatchNorm()')
        print('Using SyncBatchNorm()')

    # Trainloader
    dataloader, dataset = create_dataloader(train_path,
                                            imgsz,
                                            batch_size,
                                            gs,
                                            opt,
                                            hyp=hyp,
                                            augment=True,
                                            cache=opt.cache_images,
                                            rect=opt.rect,
                                            rank=rank,
                                            world_size=opt.world_size,
                                            workers=opt.workers,
                                            image_weights=opt.image_weights,
                                            quad=opt.quad,
                                            prefix=colorstr('train: '))
    mlc = np.concatenate(dataset.labels, 0)[:, 0].max()  # max label class
    nb = len(dataloader)  # number of batches
    assert mlc < nc, 'Label class %g exceeds nc=%g in %s. Possible class labels are 0-%g' % (
        mlc, nc, opt.data, nc - 1)

    # Process 0
    if rank in [-1, 0]:
        # testloader = create_dataloader(test_path, imgsz_test, batch_size*2, gs, opt,  # testloader
        #                                hyp=hyp, cache=opt.cache_images and not opt.notest, rect=True, rank=-1,
        #                                world_size=opt.world_size, workers=opt.workers,
        #                                pad=0.5, prefix=colorstr('val: '))[0]

        testloader = create_dataloader(
            test_path,
            imgsz_test,
            batch_size * 2,
            gs,
            opt,  # testloader
            hyp=hyp,
            cache=opt.cache_images and not opt.notest,
            rect=True,
            rank=-1,
            world_size=opt.world_size,
            workers=opt.workers,
            pad=0.5,
            prefix=colorstr('val: '))[0]

        if not opt.resume:
            labels = np.concatenate(dataset.labels, 0)
            c = torch.tensor(labels[:, 0])  # classes
            # cf = torch.bincount(c.long(), minlength=nc) + 1.  # frequency
            # model._initialize_biases(cf.to(device))
            if plots:
                plot_labels(labels, names, save_dir, loggers)
                if tb_writer:
                    tb_writer.add_histogram('classes', c, 0)

            # Anchors
            if not opt.noautoanchor:
                check_anchors(dataset,
                              model=model,
                              thr=hyp['anchor_t'],
                              imgsz=imgsz)
            model.half().float()  # pre-reduce anchor precision

    # DDP mode
    if cuda and rank != -1:
        model = DDP(model,
                    device_ids=[opt.local_rank],
                    output_device=opt.local_rank)

    # Model parameters
    hyp['box'] *= 3. / nl  # scale to layers
    hyp['cls'] *= nc / 80. * 3. / nl  # scale to classes and layers
    hyp['obj'] *= (imgsz / 640)**2 * 3. / nl  # scale to image size and layers
    hyp['label_smoothing'] = opt.label_smoothing
    model.nc = nc  # attach number of classes to model
    model.hyp = hyp  # attach hyperparameters to model
    model.gr = 1.0  # iou loss ratio (obj_loss = 1.0 or iou)
    model.class_weights = labels_to_class_weights(
        dataset.labels, nc).to(device) * nc  # attach class weights
    model.names = names

    # Start training
    t0 = time.time()
    nw = max(round(hyp['warmup_epochs'] * nb),
             1000)  # number of warmup iterations, max(3 epochs, 1k iterations)
    # nw = min(nw, (epochs - start_epoch) / 2 * nb)  # limit warmup to < 1/2 of training
    maps = np.zeros(nc)  # mAP per class
    results = (0, 0, 0, 0, 0, 0, 0
               )  # P, R, [email protected], [email protected], val_loss(box, obj, cls)
    scheduler.last_epoch = start_epoch - 1  # do not move
    scaler = amp.GradScaler(enabled=cuda)
    compute_loss = ComputeLoss(model)  # init loss class
    logger.info(f'Image sizes {imgsz} train, {imgsz_test} test\n'
                f'Using {dataloader.num_workers} dataloader workers\n'
                f'Logging results to {save_dir}\n'
                f'Starting training for {epochs} epochs...')
    print(f'Image sizes {imgsz} train, {imgsz_test} test\n'
          f'Using {dataloader.num_workers} dataloader workers\n'
          f'Logging results to {save_dir}\n'
          f'Starting training for {epochs} epochs...')

    criterion = torch.nn.BCEWithLogitsLoss()

    for epoch in range(
            start_epoch, epochs
    ):  # epoch ------------------------------------------------------------------
        model.train()

        # Update image weights (optional)
        if opt.image_weights:
            # Generate indices
            if rank in [-1, 0]:
                cw = model.class_weights.cpu().numpy() * (
                    1 - maps)**2 / nc  # class weights
                iw = labels_to_image_weights(dataset.labels,
                                             nc=nc,
                                             class_weights=cw)  # image weights
                dataset.indices = random.choices(
                    range(dataset.n), weights=iw,
                    k=dataset.n)  # rand weighted idx
            # Broadcast if DDP
            if rank != -1:
                indices = (torch.tensor(dataset.indices)
                           if rank == 0 else torch.zeros(dataset.n)).int()
                dist.broadcast(indices, 0)
                if rank != 0:
                    dataset.indices = indices.cpu().numpy()

        # Update mosaic border
        # b = int(random.uniform(0.25 * imgsz, 0.75 * imgsz + gs) // gs * gs)
        # dataset.mosaic_border = [b - imgsz, -b]  # height, width borders

        mloss = torch.zeros(4, device=device)  # mean losses
        if rank != -1:
            dataloader.sampler.set_epoch(epoch)
        pbar = enumerate(dataloader)
        logger.info(('\n' + '%10s' * 11) %
                    ('Epoch', 'gpu_mem', 'box', 'obj', 'cls', 'total',
                     'labels', 'img_size', 'hm loss', 'lo_loss', 'loss'))
        print(('\n' + '%10s' * 11) %
              ('Epoch', 'gpu_mem', 'box', 'obj', 'cls', 'total', 'labels',
               'img_size', 'hm loss', 'lo_loss', 'loss'))
        if rank in [-1, 0]:
            pbar = tqdm(pbar, total=nb)  # progress bar
        optimizer.zero_grad()
        for i, (
                imgs, hms, targets, paths, _, logt
        ) in pbar:  # batch -------------------------------------------------------------
            ni = i + nb * epoch  # number integrated batches (since train start)
            imgs = imgs.to(device, non_blocking=True).float(
            ) / 255.0  # uint8 to float32, 0-255 to 0.0-1.0

            hms = hms.to(device, non_blocking=True).float()

            # print(hms.shape, imgs.shape)
            # if i>10:
            #     break
            # print('output_layer====output_layer: ',torch.max(hms))

            # Warmup
            if ni <= nw:
                xi = [0, nw]  # x interp
                # model.gr = np.interp(ni, xi, [0.0, 1.0])  # iou loss ratio (obj_loss = 1.0 or iou)
                accumulate = max(
                    1,
                    np.interp(ni, xi, [1, nbs / total_batch_size]).round())
                for j, x in enumerate(optimizer.param_groups):
                    # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
                    x['lr'] = np.interp(ni, xi, [
                        hyp['warmup_bias_lr'] if j == 2 else 0.0,
                        x['initial_lr'] * lf(epoch)
                    ])
                    if 'momentum' in x:
                        x['momentum'] = np.interp(
                            ni, xi, [hyp['warmup_momentum'], hyp['momentum']])

            # Multi-scale
            if opt.multi_scale:
                sz = random.randrange(imgsz * 0.5,
                                      imgsz * 1.5 + gs) // gs * gs  # size
                sf = sz / max(imgs.shape[2:])  # scale factor
                if sf != 1:
                    ns = [math.ceil(x * sf / gs) * gs for x in imgs.shape[2:]
                          ]  # new shape (stretched to gs-multiple)
                    imgs = F.interpolate(imgs,
                                         size=ns,
                                         mode='bilinear',
                                         align_corners=False)

            # Forward
            with amp.autocast(enabled=cuda):
                pred, seg_out, logits = model(imgs)  # forward
                loss, loss_items = compute_loss(
                    pred, targets.to(device))  # loss scaled by batch_size
                if rank != -1:
                    loss *= opt.world_size  # gradient averaged between devices in DDP mode
                if opt.quad:
                    loss *= 4.

                # print(seg_out.shape)

                seg_out = _sigmoid(seg_out)

                # seg_out = seg_out[:,0,:,:]
                hms = torch.unsqueeze(hms, 1)

                # print(hms.shape, seg_out.shape)

                # print(targets.shape, imgs.shape, logits.shape, paths.shape)
                # logits = torch.clip(logits, -11, 11)
                # print(logits)
                logit_loss = criterion(logits, logt.to(device))

                hm_loss = segLoss(seg_out, hms)
                # print(hm_loss)

                ratio = sigmoid_rampup(epoch, int(40 * epochs / 50))
                ratio = 10 * (1 - ratio)

                loss = 1 * loss + ratio * hm_loss + 0.5 * logit_loss

            # Backward
            scaler.scale(loss).backward()

            # Optimize
            if ni % accumulate == 0:
                scaler.step(optimizer)  # optimizer.step
                scaler.update()
                optimizer.zero_grad()
                if ema:
                    ema.update(model)

            # Print
            if rank in [-1, 0]:
                mloss = (mloss * i + loss_items) / (i + 1
                                                    )  # update mean losses
                mem = '%.3gG' % (torch.cuda.memory_reserved() / 1E9
                                 if torch.cuda.is_available() else 0)  # (GB)
                s = ('%10s' * 2 + '%10.4g' * 9) % (
                    '%g/%g' %
                    (epoch, epochs - 1), mem, *mloss, targets.shape[0],
                    imgs.shape[-1], hm_loss, logit_loss, loss)
                pbar.set_description(s)

                # Plot
                if plots and ni < 3:
                    f = save_dir / f'train_batch{ni}.jpg'  # filename
                    Thread(target=plot_images,
                           args=(imgs, hms, targets, paths, f),
                           daemon=True).start()
                    # if tb_writer:
                    #     tb_writer.add_image(f, result, dataformats='HWC', global_step=epoch)
                    #     tb_writer.add_graph(model, imgs)  # add model to tensorboard
                elif plots and ni == 10 and wandb_logger.wandb:
                    wandb_logger.log({
                        "Mosaics": [
                            wandb_logger.wandb.Image(str(x), caption=x.name)
                            for x in save_dir.glob('train*.jpg') if x.exists()
                        ]
                    })

            # end batch ------------------------------------------------------------------------------------------------
        # end epoch ----------------------------------------------------------------------------------------------------

        # Scheduler
        lr = [x['lr'] for x in optimizer.param_groups]  # for tensorboard
        scheduler.step()

        # DDP process 0 or single-GPU
        if rank in [-1, 0]:
            # mAP
            ema.update_attr(model,
                            include=[
                                'yaml', 'nc', 'hyp', 'gr', 'names', 'stride',
                                'class_weights'
                            ])
            final_epoch = epoch + 1 == epochs
            if not opt.notest or final_epoch:  # Calculate mAP
                wandb_logger.current_epoch = epoch + 1
                results, maps, times = test.test(data_dict,
                                                 batch_size=batch_size * 2,
                                                 imgsz=imgsz_test,
                                                 model=ema.ema,
                                                 single_cls=opt.single_cls,
                                                 dataloader=testloader,
                                                 save_dir=save_dir,
                                                 verbose=nc < 50
                                                 and final_epoch,
                                                 plots=plots and final_epoch,
                                                 wandb_logger=wandb_logger,
                                                 compute_loss=compute_loss,
                                                 is_coco=is_coco)

            # Write
            with open(results_file, 'a') as f:
                f.write(s + '%10.4g' * 7 % results +
                        '\n')  # append metrics, val_loss
            if len(opt.name) and opt.bucket:
                os.system('gsutil cp %s gs://%s/results/results%s.txt' %
                          (results_file, opt.bucket, opt.name))

            # Log
            tags = [
                'train/box_loss',
                'train/obj_loss',
                'train/cls_loss',  # train loss
                'metrics/precision',
                'metrics/recall',
                'metrics/mAP_0.5',
                'metrics/mAP_0.5:0.95',
                'val/box_loss',
                'val/obj_loss',
                'val/cls_loss',  # val loss
                'x/lr0',
                'x/lr1',
                'x/lr2'
            ]  # params
            for x, tag in zip(list(mloss[:-1]) + list(results) + lr, tags):
                if tb_writer:
                    tb_writer.add_scalar(tag, x, epoch)  # tensorboard
                if wandb_logger.wandb:
                    wandb_logger.log({tag: x})  # W&B

            # Update best mAP
            fi = fitness(np.array(results).reshape(
                1, -1))  # weighted combination of [P, R, [email protected], [email protected]]
            if fi > best_fitness:
                best_fitness = fi
            wandb_logger.end_epoch(best_result=best_fitness == fi)

            # Save model
            if (not opt.nosave) or (final_epoch and not opt.evolve):  # if save
                ckpt = {
                    'epoch':
                    epoch,
                    'best_fitness':
                    best_fitness,
                    'training_results':
                    results_file.read_text(),
                    'model':
                    deepcopy(
                        model.module if is_parallel(model) else model).half(),
                    'ema':
                    deepcopy(ema.ema).half(),
                    'updates':
                    ema.updates,
                    'optimizer':
                    optimizer.state_dict(),
                    'wandb_id':
                    wandb_logger.wandb_run.id if wandb_logger.wandb else None
                }

                # Save last, best and delete
                torch.save(ckpt, last)
                if best_fitness == fi:
                    torch.save(ckpt, best)
                if wandb_logger.wandb:
                    if ((epoch + 1) % opt.save_period == 0
                            and not final_epoch) and opt.save_period != -1:
                        wandb_logger.log_model(last.parent,
                                               opt,
                                               epoch,
                                               fi,
                                               best_model=best_fitness == fi)
                del ckpt

        # end epoch ----------------------------------------------------------------------------------------------------
    # end training
    if rank in [-1, 0]:
        # Plots
        if plots:
            plot_results(save_dir=save_dir)  # save as results.png
            if wandb_logger.wandb:
                files = [
                    'results.png', 'confusion_matrix.png',
                    *[f'{x}_curve.png' for x in ('F1', 'PR', 'P', 'R')]
                ]
                wandb_logger.log({
                    "Results": [
                        wandb_logger.wandb.Image(str(save_dir / f), caption=f)
                        for f in files if (save_dir / f).exists()
                    ]
                })
        # Test best.pt
        logger.info('%g epochs completed in %.3f hours.\n' %
                    (epoch - start_epoch + 1, (time.time() - t0) / 3600))
        print('%g epochs completed in %.3f hours.\n' %
              (epoch - start_epoch + 1, (time.time() - t0) / 3600))
        if opt.data.endswith('coco.yaml') and nc == 80:  # if COCO
            for m in (last,
                      best) if best.exists() else (last):  # speed, mAP tests
                results, _, _ = test.test(opt.data,
                                          batch_size=batch_size * 2,
                                          imgsz=imgsz_test,
                                          conf_thres=0.001,
                                          iou_thres=0.7,
                                          model=attempt_load(m, device).half(),
                                          single_cls=opt.single_cls,
                                          dataloader=testloader,
                                          save_dir=save_dir,
                                          save_json=True,
                                          plots=False,
                                          is_coco=is_coco)

        # Strip optimizers
        final = best if best.exists() else last  # final model
        for f in last, best:
            if f.exists():
                strip_optimizer(f)  # strip optimizers
        if opt.bucket:
            os.system(f'gsutil cp {final} gs://{opt.bucket}/weights')  # upload
        if wandb_logger.wandb and not opt.evolve:  # Log the stripped model
            wandb_logger.wandb.log_artifact(
                str(final),
                type='model',
                name='run_' + wandb_logger.wandb_run.id + '_model',
                aliases=['last', 'best', 'stripped'])
        wandb_logger.finish_run()
    else:
        dist.destroy_process_group()
    torch.cuda.empty_cache()
    return results
Пример #20
0
def train(hyp, opt, device, tb_writer=None):
    logger.info(colorstr('hyperparameters: ') + ', '.join(f'{k}={v}' for k, v in hyp.items()))
    save_dir, epochs, batch_size, total_batch_size, weights, rank = \
        Path(opt.save_dir), opt.epochs, opt.batch_size, opt.total_batch_size, opt.weights, opt.global_rank

    # Directories
    wdir = save_dir / 'weights'
    wdir.mkdir(parents=True, exist_ok=True)  # make dir
    last = wdir / 'last.pt'
    best = wdir / 'best.pt'
    results_file = save_dir / 'results.txt'

    # Save run settings
    with open(save_dir / 'hyp.yaml', 'w') as f:
        yaml.safe_dump(hyp, f, sort_keys=False)
    with open(save_dir / 'opt.yaml', 'w') as f:
        yaml.safe_dump(vars(opt), f, sort_keys=False)

    # Configure
    plots = not opt.evolve  # create plots
    cuda = device.type != 'cpu'
    init_seeds(2 + rank)
    with open(opt.data) as f:
        data_dict = yaml.safe_load(f)  # data dict
    is_coco = opt.data.endswith('coco.yaml')

    # Logging- Doing this before checking the dataset. Might update data_dict
    loggers = {'wandb': None}  # loggers dict
    if rank in [-1, 0]:
        opt.hyp = hyp  # add hyperparameters
        run_id = torch.load(weights).get('wandb_id') if weights.endswith('.pt') and os.path.isfile(weights) else None
        wandb_logger = WandbLogger(opt, save_dir.stem, run_id, data_dict)
        loggers['wandb'] = wandb_logger.wandb
        data_dict = wandb_logger.data_dict
        if wandb_logger.wandb:
            weights, epochs, hyp = opt.weights, opt.epochs, opt.hyp  # WandbLogger might update weights, epochs if resuming

    nc = 1 if opt.single_cls else int(data_dict['nc'])  # number of classes
    names = ['item'] if opt.single_cls and len(data_dict['names']) != 1 else data_dict['names']  # class names
    assert len(names) == nc, '%g names found for nc=%g dataset in %s' % (len(names), nc, opt.data)  # check

    # modal stage model
    modal_stage_model = None
    if opt.modal_stage_model is not None and opt.modal_stage_model != "":
        modal_ckpt = torch.load(opt.modal_stage_model, map_location=device)
        modal_stage_model = Model(modal_ckpt['model'].yaml, ch=3, nc=nc).to(device)
        state_dict = modal_ckpt['model'].float().state_dict()
        state_dict = intersect_dicts(state_dict, modal_stage_model.state_dict(), exclude=[])
        modal_stage_model.load_state_dict(state_dict, strict=False)
        logger.info('Transferred %g/%g items from %s for modal stage model' % (len(state_dict), len(modal_stage_model.state_dict()), opt.modal_stage_model))
        modal_stage_model.eval()

    # Model
    if modal_stage_model is not None:
        input_ch = 3 + nc
    else:
        input_ch = 3
    pretrained = weights.endswith('.pt')
    if pretrained:
        with torch_distributed_zero_first(rank):
            attempt_download(weights)  # download if not found locally
        ckpt = torch.load(weights, map_location=device)  # load checkpoint
        model = Model(opt.cfg or ckpt['model'].yaml, ch=input_ch, nc=nc, anchors=hyp.get('anchors')).to(device)  # create
        exclude = ['anchor'] if (opt.cfg or hyp.get('anchors')) and not opt.resume else []  # exclude keys
        state_dict = ckpt['model'].float().state_dict()  # to FP32
        state_dict = intersect_dicts(state_dict, model.state_dict(), exclude=exclude)  # intersect
        model.load_state_dict(state_dict, strict=False)  # load
        logger.info('Transferred %g/%g items from %s' % (len(state_dict), len(model.state_dict()), weights))  # report
    else:
        model = Model(opt.cfg, ch=input_ch, nc=nc, anchors=hyp.get('anchors')).to(device)  # create
    with torch_distributed_zero_first(rank):
        check_dataset(data_dict)  # check
    train_path = data_dict['train']
    val_paths = dict()
    if type(data_dict['val']) == str:
        val_paths[MASTER_VAL_NAME] = data_dict['val']
    elif len(data_dict['val']) == 1:
        val_paths[MASTER_VAL_NAME] = data_dict['val']
    else:
        if MASTER_VAL_NAME not in data_dict['val']:
            raise ValueError(f"When you use multiple validation sets, one MUST be named '{MASTER_VAL_NAME}'. This is the val set" +
                             f" we will use for early stopping/model selection. Your data yaml file ({opt.data}) does NOT " +
                             "conform to this requirement. Please fix it.")
        for k, v in data_dict['val'].items():
            # in this case, the yaml file has several datasets under the key 'val'
            val_paths[k] = v

    # Freeze
    freeze = []  # parameter names to freeze (full or partial)
    for k, v in model.named_parameters():
        v.requires_grad = True  # train all layers
        if any(x in k for x in freeze):
            print('freezing %s' % k)
            v.requires_grad = False

    # Optimizer
    nbs = 64  # nominal batch size
    accumulate = max(round(nbs / total_batch_size), 1)  # accumulate loss before optimizing
    hyp['weight_decay'] *= total_batch_size * accumulate / nbs  # scale weight_decay
    logger.info(f"Scaled weight_decay = {hyp['weight_decay']}")

    pg0, pg1, pg2 = [], [], []  # optimizer parameter groups
    for k, v in model.named_modules():
        if hasattr(v, 'bias') and isinstance(v.bias, nn.Parameter):
            pg2.append(v.bias)  # biases
        if isinstance(v, nn.BatchNorm2d):
            pg0.append(v.weight)  # no decay
        elif hasattr(v, 'weight') and isinstance(v.weight, nn.Parameter):
            pg1.append(v.weight)  # apply decay

    if opt.adam:
        optimizer = optim.Adam(pg0, lr=hyp['lr0'], betas=(hyp['momentum'], 0.999))  # adjust beta1 to momentum
    else:
        optimizer = optim.SGD(pg0, lr=hyp['lr0'], momentum=hyp['momentum'], nesterov=True)

    optimizer.add_param_group({'params': pg1, 'weight_decay': hyp['weight_decay']})  # add pg1 with weight_decay
    optimizer.add_param_group({'params': pg2})  # add pg2 (biases)
    logger.info('Optimizer groups: %g .bias, %g conv.weight, %g other' % (len(pg2), len(pg1), len(pg0)))
    del pg0, pg1, pg2

    # Scheduler https://arxiv.org/pdf/1812.01187.pdf
    # https://pytorch.org/docs/stable/_modules/torch/optim/lr_scheduler.html#OneCycleLR
    if opt.linear_lr:
        lf = lambda x: (1 - x / (epochs - 1)) * (1.0 - hyp['lrf']) + hyp['lrf']  # linear
    else:
        lf = one_cycle(1, hyp['lrf'], epochs)  # cosine 1->hyp['lrf']
    scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf)
    # plot_lr_scheduler(optimizer, scheduler, epochs)

    # EMA
    ema = ModelEMA(model) if rank in [-1, 0] else None

    # Resume
    start_epoch, best_fitness = 0, 0.0
    if pretrained:
        # Optimizer
        if ckpt['optimizer'] is not None:
            optimizer.load_state_dict(ckpt['optimizer'])
            best_fitness = ckpt['best_fitness']

        # EMA
        if ema and ckpt.get('ema'):
            ema.ema.load_state_dict(ckpt['ema'].float().state_dict())
            ema.updates = ckpt['updates']

        # Results
        if ckpt.get('training_results') is not None:
            results_file.write_text(ckpt['training_results'])  # write results.txt

        # Epochs
        start_epoch = ckpt['epoch'] + 1
        if opt.resume:
            assert start_epoch > 0, '%s training to %g epochs is finished, nothing to resume.' % (weights, epochs)
        if epochs < start_epoch:
            logger.info('%s has been trained for %g epochs. Fine-tuning for %g additional epochs.' %
                        (weights, ckpt['epoch'], epochs))
            epochs += ckpt['epoch']  # finetune additional epochs

        del ckpt, state_dict

    # Image sizes
    gs = max(int(model.stride.max()), 32)  # grid size (max stride)
    nl = model.model[-1].nl  # number of detection layers (used for scaling hyp['obj'])
    imgsz, imgsz_test = [check_img_size(x, gs) for x in opt.img_size]  # verify imgsz are gs-multiples

    # DP mode
    if cuda and rank == -1 and torch.cuda.device_count() > 1:
        model = torch.nn.DataParallel(model)

    # SyncBatchNorm
    if opt.sync_bn and cuda and rank != -1:
        model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model).to(device)
        logger.info('Using SyncBatchNorm()')

    # Trainloader
    dataloader, dataset = create_dataloader(train_path, imgsz, batch_size, gs, opt,
                                            hyp=hyp, augment=True, cache=opt.cache_images, rect=opt.rect, rank=rank,
                                            world_size=opt.world_size, workers=opt.workers,
                                            image_weights=opt.image_weights, quad=opt.quad, prefix=colorstr('train: '))
    if dataset.single_labelset:
        mlc = np.concatenate(dataset.labels, 0)[:, 0].max()  # max label class
    else:
        mlc = np.concatenate([dataset.labels[i]['amodal'] for i in range(len(dataset.labels))], 0)[:, 0].max()  # max label class, as taken from *amodal* labels
    nb = len(dataloader)  # number of batches
    assert mlc < nc, 'Label class %g exceeds nc=%g in %s. Possible class labels are 0-%g' % (mlc, nc, opt.data, nc - 1)

    # Process 0
    if rank in [-1, 0]:
        val_loaders = dict()
        for k, v in val_paths.items():
            val_loaders[k] = create_dataloader(v, imgsz_test, batch_size * 2, gs, opt,
                                           hyp=hyp, cache=opt.cache_images and not opt.notest, rect=True, rank=-1,
                                           world_size=opt.world_size, workers=opt.workers,
                                           pad=0.5, prefix=colorstr(f"val/{k}: "))[0]

        if not opt.resume:
            if dataset.single_labelset:
                labels = np.concatenate(dataset.labels, 0)
            else:
                # use the class distribution from the amodal labels for this generated histogram
                labels = np.concatenate([dataset.labels[i]['amodal'] for i in range(len(dataset.labels))], 0)
            c = torch.tensor(labels[:, 0])  # classes
            # cf = torch.bincount(c.long(), minlength=nc) + 1.  # frequency
            # model._initialize_biases(cf.to(device))
            if plots:
                plot_labels(labels, names, save_dir, loggers)
                if tb_writer:
                    tb_writer.add_histogram('classes', c, 0)

            # Anchors
            if not opt.noautoanchor:
                check_anchors(dataset, model=model, thr=hyp['anchor_t'], imgsz=imgsz)
            model.half().float()  # pre-reduce anchor precision

    # DDP mode
    if cuda and rank != -1:
        model = DDP(model, device_ids=[opt.local_rank], output_device=opt.local_rank,
                    # nn.MultiheadAttention incompatibility with DDP https://github.com/pytorch/pytorch/issues/26698
                    find_unused_parameters=any(isinstance(layer, nn.MultiheadAttention) for layer in model.modules()))

    # Model parameters
    hyp['box'] *= 3. / nl  # scale to layers
    hyp['cls'] *= nc / 80. * 3. / nl  # scale to classes and layers
    hyp['obj'] *= (imgsz / 640) ** 2 * 3. / nl  # scale to image size and layers
    hyp['label_smoothing'] = opt.label_smoothing
    model.nc = nc  # attach number of classes to model
    model.hyp = hyp  # attach hyperparameters to model
    model.gr = 1.0  # iou loss ratio (obj_loss = 1.0 or iou)
    model.class_weights = labels_to_class_weights(dataset.labels, nc).to(device) * nc  # attach class weights
    model.names = names

    # Start training
    t0 = time.time()
    nw = max(round(hyp['warmup_epochs'] * nb), 1000)  # number of warmup iterations, max(3 epochs, 1k iterations)
    # nw = min(nw, (epochs - start_epoch) / 2 * nb)  # limit warmup to < 1/2 of training
    maps = np.zeros(nc)  # mAP per class
    results = (0, 0, 0, 0, 0, 0, 0)  # P, R, [email protected], [email protected], val_loss(box, obj, cls)
    scheduler.last_epoch = start_epoch - 1  # do not move
    scaler = amp.GradScaler(enabled=cuda)
    compute_loss = ComputeLoss(model)  # init loss class

    # init tensorboardx tags
    train_tags = ['train/box_loss', 'train/obj_loss', 'train/cls_loss']
    lr_tags = ['x/lr0', 'x/lr1', 'x/lr2']

    logger.info(f'Image sizes {imgsz} train, {imgsz_test} test\n'
                f'Using {dataloader.num_workers} dataloader workers\n'
                f'Logging results to {save_dir}\n'
                f'Starting training for {epochs} epochs...')
    for epoch in range(start_epoch, epochs):  # epoch ------------------------------------------------------------------
        model.train()

        # Update image weights (optional)
        if opt.image_weights:
            if not dataset.single_labelset:
                raise NotImplementedError("We don't support image weighting in the modal/amodal label case yet, but it can be added.")
            # Generate indices
            if rank in [-1, 0]:
                cw = model.class_weights.cpu().numpy() * (1 - maps) ** 2 / nc  # class weights
                iw = labels_to_image_weights(dataset.labels, nc=nc, class_weights=cw)  # image weights
                dataset.indices = random.choices(range(dataset.n), weights=iw, k=dataset.n)  # rand weighted idx
            # Broadcast if DDP
            if rank != -1:
                indices = (torch.tensor(dataset.indices) if rank == 0 else torch.zeros(dataset.n)).int()
                dist.broadcast(indices, 0)
                if rank != 0:
                    dataset.indices = indices.cpu().numpy()

        # Update mosaic border
        # b = int(random.uniform(0.25 * imgsz, 0.75 * imgsz + gs) // gs * gs)
        # dataset.mosaic_border = [b - imgsz, -b]  # height, width borders

        mloss = torch.zeros(4, device=device)  # mean losses
        if rank != -1:
            dataloader.sampler.set_epoch(epoch)
        pbar = enumerate(dataloader)
        logger.info(('\n' + '%10s' * 8) % ('Epoch', 'gpu_mem', 'box', 'obj', 'cls', 'total', 'labels', 'img_size'))
        if rank in [-1, 0]:
            pbar = tqdm(pbar, total=nb)  # progress bar
        optimizer.zero_grad()
        for i, (imgs, targets, paths, _) in pbar:  # batch -------------------------------------------------------------
            ni = i + nb * epoch  # number integrated batches (since train start)
            imgs = imgs.to(device, non_blocking=True).float() / 255.0  # uint8 to float32, 0-255 to 0.0-1.0

            """
            In the modal/amodal use case, 'targets' is a dictionary of tensors, so you should choose
            targets['modal'] or targets['amodal'] depending on your needs.
            """
            # TODO: change this logic when ready!
            if isinstance(targets, dict):
                targets = targets['amodal']

            if modal_stage_model is not None:
                with torch.no_grad():
                    img_shape = (imgs.shape[2], imgs.shape[3])
                    boxes, _ = modal_stage_model.forward(imgs)
                    pixel_map = predicted_bboxes_to_pixel_map(boxes, img_shape)
                    imgs = torch.cat([imgs, pixel_map], dim=1)


            # Warmup
            if ni <= nw:
                xi = [0, nw]  # x interp
                # model.gr = np.interp(ni, xi, [0.0, 1.0])  # iou loss ratio (obj_loss = 1.0 or iou)
                accumulate = max(1, np.interp(ni, xi, [1, nbs / total_batch_size]).round())
                for j, x in enumerate(optimizer.param_groups):
                    # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
                    x['lr'] = np.interp(ni, xi, [hyp['warmup_bias_lr'] if j == 2 else 0.0, x['initial_lr'] * lf(epoch)])
                    if 'momentum' in x:
                        x['momentum'] = np.interp(ni, xi, [hyp['warmup_momentum'], hyp['momentum']])

            # Multi-scale
            if opt.multi_scale:
                sz = random.randrange(imgsz * 0.5, imgsz * 1.5 + gs) // gs * gs  # size
                sf = sz / max(imgs.shape[2:])  # scale factor
                if sf != 1:
                    ns = [math.ceil(x * sf / gs) * gs for x in imgs.shape[2:]]  # new shape (stretched to gs-multiple)
                    imgs = F.interpolate(imgs, size=ns, mode='bilinear', align_corners=False)

            # Forward
            with amp.autocast(enabled=cuda):
                pred = model(imgs)  # forward
                loss, loss_items = compute_loss(pred, targets.to(device))  # loss scaled by batch_size
                if rank != -1:
                    loss *= opt.world_size  # gradient averaged between devices in DDP mode
                if opt.quad:
                    loss *= 4.

            # Backward
            scaler.scale(loss).backward()

            # Optimize
            if ni % accumulate == 0:
                scaler.step(optimizer)  # optimizer.step
                scaler.update()
                optimizer.zero_grad()
                if ema:
                    ema.update(model)

            # Print
            if rank in [-1, 0]:
                mloss = (mloss * i + loss_items) / (i + 1)  # update mean losses
                mem = '%.3gG' % (torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0)  # (GB)
                s = ('%10s' * 2 + '%10.4g' * 6) % (
                    '%g/%g' % (epoch, epochs - 1), mem, *mloss, targets.shape[0], imgs.shape[-1])
                pbar.set_description(s)

                # Plot
                if plots and ni < 3:
                    f = save_dir / f'train_batch{ni}.jpg'  # filename
                    Thread(target=plot_images, args=(imgs, targets, paths, f), daemon=True).start()
                    # if tb_writer:
                    #     tb_writer.add_image(f, result, dataformats='HWC', global_step=epoch)
                    #     tb_writer.add_graph(torch.jit.trace(model, imgs, strict=False), [])  # add model graph
                elif plots and ni == 10 and wandb_logger.wandb:
                    wandb_logger.log({"Mosaics": [wandb_logger.wandb.Image(str(x), caption=x.name) for x in
                                                  save_dir.glob('train*.jpg') if x.exists()]})

                # SEND RESULTS TO TBX
                if ni % nb != 0 and ni % opt.tbx_report_train_every_n_batches == 1:
                    # ni % nb != 0 condition to avoid double-logging anything, ... == 1 condition to log information (almost) right away
                    for x, tag in zip(mloss[:-1], train_tags):
                        tb_writer.add_scalar(tag, x, ni)

                    # init tensorboardx 'lr' list
                    lr = [x['lr'] for x in optimizer.param_groups]  # gather learning rates
                    for x, tag in zip(lr, lr_tags):
                        tb_writer.add_scalar(tag, x, ni)

                # TODO: if we want to update val loss more frequently, do it here

            # end batch ------------------------------------------------------------------------------------------------
        # end epoch ----------------------------------------------------------------------------------------------------

        # Scheduler
        lr = [x['lr'] for x in optimizer.param_groups]  # for tensorboard
        scheduler.step()

        # DDP process 0 or single-GPU
        if rank in [-1, 0]:
            # mAP
            ema.update_attr(model, include=['yaml', 'nc', 'hyp', 'gr', 'names', 'stride', 'class_weights'])
            final_epoch = epoch + 1 == epochs
            if not opt.notest or final_epoch:  # Calculate mAP
                wandb_logger.current_epoch = epoch + 1
                for val_loader_name in val_loaders.keys():
                    temp_results, temp_maps, temp_times = test.test(data_dict,
                                                     batch_size=batch_size * 2,
                                                     imgsz=imgsz_test,
                                                     model=ema.ema,
                                                     single_cls=opt.single_cls,
                                                     dataloader=val_loaders[val_loader_name],
                                                     save_dir=save_dir,
                                                     verbose=nc < 50 and final_epoch,
                                                     plots=plots and final_epoch,
                                                     wandb_logger=wandb_logger,
                                                     compute_loss=compute_loss,
                                                     is_coco=is_coco,
                                                     modal_stage_model=modal_stage_model)
                    if val_loader_name != MASTER_VAL_NAME:
                        # Log tbx metrics for all non-master validation sets
                        tbx_tags = ['precision', 'recall', 'mAP_0.5', 'mAP_0.5:0.95',
                                    'box_loss', 'obj_loss', 'cls_loss']
                        for x, tag in zip(list(temp_results), tbx_tags):
                            if tb_writer:
                                tb_writer.add_scalar(f"{val_loader_name}/{tag}", x, nb * (epoch + 1))
                            if wandb_logger.wandb:
                                wandb_logger.log({f"{val_loader_name}/{tag}": x})  # W&B
                    else:
                        results = temp_results
                        maps = temp_maps
                        times = temp_times

            # Log
            all_tbx_tags = ['train/box_loss', 'train/obj_loss', 'train/cls_loss',  # train loss
                            # IMPORTANT: when looking at tbx results, the metrics under 'metrics' are calculated on the MASTER VAL SET.
                            'metrics/precision', 'metrics/recall', 'metrics/mAP_0.5', 'metrics/mAP_0.5:0.95',
                            f"{MASTER_VAL_NAME}/box_loss", f"{MASTER_VAL_NAME}/obj_loss", f"{MASTER_VAL_NAME}/cls_loss",  # val loss
                            'x/lr0', 'x/lr1', 'x/lr2']  # params
            for x, tag in zip(list(mloss[:-1]) + list(results) + lr, all_tbx_tags):
                # TBX UPDATES
                if tb_writer:
                    tb_writer.add_scalar(tag, x, nb * (epoch + 1))  # tensorboard
                if wandb_logger.wandb:
                    wandb_logger.log({tag: x})  # W&B

            # Write
            with open(results_file, 'a') as f:
                f.write(s + '%10.4g' * 7 % results + '\n')  # append metrics, val_loss
            if len(opt.name) and opt.bucket:
                os.system('gsutil cp %s gs://%s/results/results%s.txt' % (results_file, opt.bucket, opt.name))

            # Update best mAP
            fi = fitness(np.array(results).reshape(1, -1))  # weighted combination of [P, R, [email protected], [email protected]]
            if fi > best_fitness:
                best_fitness = fi
            wandb_logger.end_epoch(best_result=best_fitness == fi)

            # Save model
            if (not opt.nosave) or (final_epoch and not opt.evolve):  # if save
                ckpt = {'epoch': epoch,
                        'best_fitness': best_fitness,
                        'training_results': results_file.read_text(),
                        'model': deepcopy(model.module if is_parallel(model) else model).half(),
                        'ema': deepcopy(ema.ema).half(),
                        'updates': ema.updates,
                        'optimizer': optimizer.state_dict(),
                        'wandb_id': wandb_logger.wandb_run.id if wandb_logger.wandb else None}

                # Save last, best and delete
                torch.save(ckpt, last)
                if best_fitness == fi:
                    torch.save(ckpt, best)
                if wandb_logger.wandb:
                    if ((epoch + 1) % opt.save_period == 0 and not final_epoch) and opt.save_period != -1:
                        wandb_logger.log_model(
                            last.parent, opt, epoch, fi, best_model=best_fitness == fi)
                del ckpt

        # end epoch ----------------------------------------------------------------------------------------------------
    # end training
    if rank in [-1, 0]:
        # Plots
        if plots:
            plot_results(save_dir=save_dir)  # save as results.png
            if wandb_logger.wandb:
                files = ['results.png', 'confusion_matrix.png', *[f'{x}_curve.png' for x in ('F1', 'PR', 'P', 'R')]]
                wandb_logger.log({"Results": [wandb_logger.wandb.Image(str(save_dir / f), caption=f) for f in files
                                              if (save_dir / f).exists()]})
        # Test best.pt
        logger.info('%g epochs completed in %.3f hours.\n' % (epoch - start_epoch + 1, (time.time() - t0) / 3600))
        if opt.data.endswith('coco.yaml') and nc == 80:  # if COCO
            for m in (last, best) if best.exists() else (last):  # speed, mAP tests
                results, _, _ = test.test(opt.data,
                                          batch_size=batch_size * 2,
                                          imgsz=imgsz_test,
                                          conf_thres=0.001,
                                          iou_thres=0.7,
                                          model=attempt_load(m, device).half(),
                                          single_cls=opt.single_cls,
                                          dataloader=val_loaders[MASTER_VAL_NAME],
                                          save_dir=save_dir,
                                          save_json=True,
                                          plots=False,
                                          is_coco=is_coco,
                                          modal_stage_model=modal_stage_model)

        # Strip optimizers
        final = best if best.exists() else last  # final model
        for f in last, best:
            if f.exists():
                strip_optimizer(f)  # strip optimizers
        if opt.bucket:
            os.system(f'gsutil cp {final} gs://{opt.bucket}/weights')  # upload
        if wandb_logger.wandb and not opt.evolve:  # Log the stripped model
            wandb_logger.wandb.log_artifact(str(final), type='model',
                                            name='run_' + wandb_logger.wandb_run.id + '_model',
                                            aliases=['last', 'best', 'stripped'])
        wandb_logger.finish_run()
    else:
        dist.destroy_process_group()
    torch.cuda.empty_cache()
    return results