Пример #1
0
def main(unused_argv):
    tf.logging.set_verbosity(tf.logging.INFO)

    tf.gfile.MakeDirs(FLAGS.train_logdir)
    tf.logging.info('Training on %s set', FLAGS.train_split)

    graph = tf.Graph()
    with graph.as_default():
        with tf.device(
                tf.train.replica_device_setter(ps_tasks=FLAGS.num_ps_tasks)):
            assert FLAGS.train_batch_size % FLAGS.num_clones == 0, (
                'Training batch size not divisble by number of clones (GPUs).')
            clone_batch_size = FLAGS.train_batch_size // FLAGS.num_clones

            dataset = data_generator.Dataset(
                dataset_name=FLAGS.dataset,
                split_name=FLAGS.train_split,
                dataset_dir=FLAGS.dataset_dir,
                batch_size=clone_batch_size,
                crop_size=[int(sz) for sz in FLAGS.train_crop_size],
                min_resize_value=FLAGS.min_resize_value,
                max_resize_value=FLAGS.max_resize_value,
                resize_factor=FLAGS.resize_factor,
                min_scale_factor=FLAGS.min_scale_factor,
                max_scale_factor=FLAGS.max_scale_factor,
                scale_factor_step_size=FLAGS.scale_factor_step_size,
                model_variant=FLAGS.model_variant,
                num_readers=2,
                is_training=True,
                should_shuffle=True,
                should_repeat=True)

            train_tensor, summary_op = _train_deeplab_model(
                dataset.get_one_shot_iterator(), dataset.num_of_classes,
                dataset.ignore_label)

            # Soft placement allows placing on CPU ops without GPU implementation.
            session_config = tf.ConfigProto(allow_soft_placement=True,
                                            log_device_placement=False)

            last_layers = model.get_extra_layer_scopes(
                FLAGS.last_layers_contain_logits_only)
            init_fn = None
            if FLAGS.tf_initial_checkpoint:
                init_fn = train_utils.get_model_init_fn(
                    FLAGS.train_logdir,
                    FLAGS.tf_initial_checkpoint,
                    FLAGS.initialize_last_layer,
                    last_layers,
                    ignore_missing_vars=True)

            scaffold = tf.train.Scaffold(
                init_fn=init_fn,
                summary_op=summary_op,
            )

            stop_hook = tf.train.StopAtStepHook(
                last_step=FLAGS.training_number_of_steps)

            profile_dir = FLAGS.profile_logdir
            if profile_dir is not None:
                tf.gfile.MakeDirs(profile_dir)

            with tf.contrib.tfprof.ProfileContext(enabled=profile_dir
                                                  is not None,
                                                  profile_dir=profile_dir):
                with tf.train.MonitoredTrainingSession(
                        master=FLAGS.master,
                        is_chief=(FLAGS.task == 0),
                        config=session_config,
                        scaffold=scaffold,
                        checkpoint_dir=FLAGS.train_logdir,
                        summary_dir=FLAGS.train_logdir,
                        log_step_count_steps=FLAGS.log_steps,
                        save_summaries_steps=FLAGS.save_summaries_secs,
                        save_checkpoint_secs=FLAGS.save_interval_secs,
                        hooks=[stop_hook]) as sess:
                    while not sess.should_stop():
                        sess.run([train_tensor])
Пример #2
0
def main(unused_argv):
    tf.logging.set_verbosity(tf.logging.INFO)
    # Set up deployment (i.e., multi-GPUs and/or multi-replicas).
    config = model_deploy.DeploymentConfig(num_clones=FLAGS.num_clones,
                                           clone_on_cpu=FLAGS.clone_on_cpu,
                                           replica_id=FLAGS.task,
                                           num_replicas=FLAGS.num_replicas,
                                           num_ps_tasks=FLAGS.num_ps_tasks)

    # Split the batch across GPUs.
    assert FLAGS.train_batch_size % config.num_clones == 0, (
        'Training batch size not divisble by number of clones (GPUs).')

    clone_batch_size = FLAGS.train_batch_size // config.num_clones

    # Get dataset-dependent information.
    dataset = segmentation_dataset.get_dataset(FLAGS.dataset,
                                               FLAGS.train_split,
                                               dataset_dir=FLAGS.dataset_dir)

    tf.gfile.MakeDirs(FLAGS.train_logdir)
    tf.logging.info('Training on %s set', FLAGS.train_split)

    with tf.Graph().as_default() as graph:
        with tf.device(config.inputs_device()):
            samples = input_generator.get(
                dataset,
                FLAGS.train_crop_size,
                clone_batch_size,
                min_resize_value=FLAGS.min_resize_value,
                max_resize_value=FLAGS.max_resize_value,
                resize_factor=FLAGS.resize_factor,
                min_scale_factor=FLAGS.min_scale_factor,
                max_scale_factor=FLAGS.max_scale_factor,
                scale_factor_step_size=FLAGS.scale_factor_step_size,
                dataset_split=FLAGS.train_split,
                is_training=True,
                model_variant=FLAGS.model_variant)
            inputs_queue = prefetch_queue.prefetch_queue(samples,
                                                         capacity=128 *
                                                         config.num_clones)
            #samples, capacity=12 * config.num_clones)

        # Create the global step on the device storing the variables.
        with tf.device(config.variables_device()):
            global_step = tf.train.get_or_create_global_step()

            # Define the model and create clones.
            model_fn = _build_unet

            #model_args = (inputs_queue, {
            #    common.OUTPUT_TYPE: dataset.num_classes
            #}, dataset.ignore_label)
            model_args = (inputs_queue, dataset, dataset.ignore_label)
            clones = model_deploy.create_clones(config,
                                                model_fn,
                                                args=model_args)

            # Gather update_ops from the first clone. These contain, for example,
            # the updates for the batch_norm variables created by model_fn.
            first_clone_scope = config.clone_scope(0)
            update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS,
                                           first_clone_scope)
            #input('stop!')

        # Gather initial summaries.
        summaries = set(tf.get_collection(tf.GraphKeys.SUMMARIES))

        # Add summaries for model variables.
        for model_var in slim.get_model_variables():
            summaries.add(tf.summary.histogram(model_var.op.name, model_var))

        # Add summaries for images, labels, semantic predictions
        if FLAGS.save_summaries_images:
            summary_image = graph.get_tensor_by_name(
                ('%s/%s:0' % (first_clone_scope, common.IMAGE)).strip('/'))
            summaries.add(
                tf.summary.image('samples/%s' % common.IMAGE, summary_image))

            first_clone_label = graph.get_tensor_by_name(
                ('%s/%s:0' % (first_clone_scope, common.LABEL)).strip('/'))
            # Scale up summary image pixel values for better visualization.
            pixel_scaling = max(1, 255 // dataset.num_classes)
            summary_label = tf.cast(first_clone_label * pixel_scaling,
                                    tf.uint8)
            summaries.add(
                tf.summary.image('samples/%s' % common.LABEL, summary_label))

            first_clone_output = graph.get_tensor_by_name(
                ('%s/%s:0' %
                 (first_clone_scope, common.OUTPUT_TYPE)).strip('/'))
            predictions = tf.expand_dims(tf.argmax(first_clone_output, 3), -1)

            summary_predictions = tf.cast(predictions * pixel_scaling,
                                          tf.uint8)
            summaries.add(
                tf.summary.image('samples/%s' % common.OUTPUT_TYPE,
                                 summary_predictions))

        # Add summaries for losses.
        for loss in tf.get_collection(tf.GraphKeys.LOSSES, first_clone_scope):
            summaries.add(tf.summary.scalar('losses/%s' % loss.op.name, loss))

        # Build the optimizer based on the device specification.
        with tf.device(config.optimizer_device()):
            learning_rate = train_utils.get_model_learning_rate(
                FLAGS.learning_policy, FLAGS.base_learning_rate,
                FLAGS.learning_rate_decay_step,
                FLAGS.learning_rate_decay_factor,
                FLAGS.training_number_of_steps, FLAGS.learning_power,
                FLAGS.slow_start_step, FLAGS.slow_start_learning_rate)
            optimizer = tf.train.MomentumOptimizer(learning_rate,
                                                   FLAGS.momentum)
            summaries.add(tf.summary.scalar('learning_rate', learning_rate))

        startup_delay_steps = FLAGS.task * FLAGS.startup_delay_steps
        for variable in slim.get_model_variables():
            summaries.add(tf.summary.histogram(variable.op.name, variable))

        with tf.device(config.variables_device()):
            total_loss, grads_and_vars = model_deploy.optimize_clones(
                clones, optimizer)
            total_loss = tf.check_numerics(total_loss, 'Loss is inf or nan.')
            summaries.add(tf.summary.scalar('total_loss', total_loss))

            # Modify the gradients for biases and last layer variables.
            last_layers = model.get_extra_layer_scopes(
                FLAGS.last_layers_contain_logits_only)
            grad_mult = train_utils.get_model_gradient_multipliers(
                last_layers, FLAGS.last_layer_gradient_multiplier)
            if grad_mult:
                grads_and_vars = slim.learning.multiply_gradients(
                    grads_and_vars, grad_mult)

            # Create gradient update op.
            grad_updates = optimizer.apply_gradients(grads_and_vars,
                                                     global_step=global_step)
            update_ops.append(grad_updates)
            update_op = tf.group(*update_ops)
            with tf.control_dependencies([update_op]):
                train_tensor = tf.identity(total_loss, name='train_op')

        # Add the summaries from the first clone. These contain the summaries
        # created by model_fn and either optimize_clones() or _gather_clone_loss().
        summaries |= set(
            tf.get_collection(tf.GraphKeys.SUMMARIES, first_clone_scope))

        # Merge all summaries together.
        summary_op = tf.summary.merge(list(summaries))

        # Soft placement allows placing on CPU ops without GPU implementation.
        session_config = tf.ConfigProto(allow_soft_placement=True,
                                        log_device_placement=False)
        #input('no training')
        # Start the training.
        slim.learning.train(train_tensor,
                            logdir=FLAGS.train_logdir,
                            log_every_n_steps=FLAGS.log_steps,
                            master=FLAGS.master,
                            number_of_steps=FLAGS.training_number_of_steps,
                            is_chief=(FLAGS.task == 0),
                            session_config=session_config,
                            startup_delay_steps=startup_delay_steps,
                            init_fn=train_utils.get_model_init_fn(
                                FLAGS.train_logdir,
                                FLAGS.tf_initial_checkpoint,
                                FLAGS.initialize_last_layer,
                                last_layers,
                                ignore_missing_vars=True),
                            summary_op=summary_op,
                            save_summaries_secs=FLAGS.save_summaries_secs,
                            save_interval_secs=FLAGS.save_interval_secs)
Пример #3
0
def main(unused_arg):
    tf.logging.set_verbosity(tf.logging.INFO)
    # Set up deployment (i.e., multi-GPUs and/or multi-replicas).
    config = model_deploy.DeploymentConfig(num_clones=FLAGS.num_clones,
                                           clone_on_cpu=FLAGS.clone_on_cpu,
                                           replica_id=FLAGS.task,
                                           num_replicas=FLAGS.num_replicas,
                                           num_ps_tasks=FLAGS.num_ps_tasks)

    # Split the batch across GPUs.
    assert FLAGS.train_batch_size % config.num_clones == 0, (
        'Training batch size not divisble by number of clones (GPUs).')

    clone_batch_size = FLAGS.train_batch_size // config.num_clones

    tf.gfile.MakeDirs(FLAGS.train_dir)

    with tf.Graph().as_default() as graph:
        with tf.device(config.inputs_device()):
            samples, num_samples = get_dataset.get_dataset(
                FLAGS.dataset,
                FLAGS.dataset_dir,
                split_name=FLAGS.train_split,
                is_training=True,
                image_size=[FLAGS.image_size, FLAGS.image_size],
                batch_size=clone_batch_size,
                channel=FLAGS.input_channel)
            tf.logging.info('Training on %s set: %d', FLAGS.train_split,
                            num_samples)
            inputs_queue = prefetch_queue.prefetch_queue(samples,
                                                         capacity=128 *
                                                         config.num_clones)
        # Create the global step on the device storing the variables.
        with tf.device(config.variables_device()):
            global_step = tf.train.get_or_create_global_step()
            # Define the model and create clones.
            model_fn = _build_model
            model_args = (inputs_queue, clone_batch_size)
            clones = model_deploy.create_clones(config,
                                                model_fn,
                                                args=model_args)

            # Gather update_ops from the first clone. These contain, for example,
            # the updates for the batch_norm variables created by model_fn.
            first_clone_scope = config.clone_scope(0)
            update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS,
                                           first_clone_scope)
        # Gather initial summaries.
        summaries = set(tf.get_collection(tf.GraphKeys.SUMMARIES))
        # Add summaries for model variables.
        if FLAGS.save_summaries_variables:
            for model_var in slim.get_model_variables():
                summaries.add(
                    tf.summary.histogram(model_var.op.name, model_var))

        # Add summaries for losses.
        for loss in tf.get_collection(tf.GraphKeys.LOSSES, first_clone_scope):
            summaries.add(tf.summary.scalar('losses/%s' % loss.op.name, loss))
        # Build the optimizer based on the device specification.
        with tf.device(config.optimizer_device()):
            learning_rate = train_utils.get_model_learning_rate(
                FLAGS.learning_policy, FLAGS.base_learning_rate,
                FLAGS.learning_rate_decay_step,
                FLAGS.learning_rate_decay_factor, FLAGS.number_of_steps,
                FLAGS.learning_power, FLAGS.slow_start_step,
                FLAGS.slow_start_learning_rate)
            optimizer = tf.train.AdamOptimizer(learning_rate)
            #optimizer = tf.train.RMSPropOptimizer(learning_rate, momentum=FLAGS.momentum)
            summaries.add(tf.summary.scalar('learning_rate', learning_rate))

        startup_delay_steps = FLAGS.task * FLAGS.startup_delay_steps
        with tf.device(config.variables_device()):
            total_loss, grads_and_vars = model_deploy.optimize_clones(
                clones, optimizer)
            total_loss = tf.check_numerics(total_loss, 'Loss is inf or nan.')
            summaries.add(tf.summary.scalar('losses/total_loss', total_loss))

            # Modify the gradients for biases and last layer variables.
            if (FLAGS.dataset == 'protein') and FLAGS.add_counts_logits:
                last_layers = ['Logits', 'Counts_logits']
            else:
                last_layers = ['Logits']
            grad_mult = train_utils.get_model_gradient_multipliers(
                last_layers, FLAGS.last_layer_gradient_multiplier)
            if grad_mult:
                grads_and_vars = slim.learning.multiply_gradients(
                    grads_and_vars, grad_mult)

            # Create gradient update op.
            grad_updates = optimizer.apply_gradients(grads_and_vars,
                                                     global_step=global_step)
            update_ops.append(grad_updates)
            update_op = tf.group(*update_ops)
            with tf.control_dependencies([update_op]):
                train_tensor = tf.identity(total_loss, name='train_op')

        # Add the summaries from the first clone. These contain the summaries
        # created by model_fn and either optimize_clones() or _gather_clone_loss().
        summaries |= set(
            tf.get_collection(tf.GraphKeys.SUMMARIES, first_clone_scope))

        # Merge all summaries together.
        summary_op = tf.summary.merge(list(summaries))

        # Soft placement allows placing on CPU ops without GPU implementation.
        session_config = tf.ConfigProto(allow_soft_placement=True,
                                        log_device_placement=False)
        session_config.gpu_options.allow_growth = True
        session_config.gpu_options.per_process_gpu_memory_fraction = 0.9

        # Start the training.
        slim.learning.train(train_tensor,
                            FLAGS.train_dir,
                            is_chief=(FLAGS.task == 0),
                            master=FLAGS.master,
                            graph=graph,
                            log_every_n_steps=FLAGS.log_every_n_steps,
                            session_config=session_config,
                            startup_delay_steps=startup_delay_steps,
                            number_of_steps=FLAGS.number_of_steps,
                            save_summaries_secs=FLAGS.save_summaries_secs,
                            save_interval_secs=FLAGS.save_interval_secs,
                            init_fn=train_utils.get_model_init_fn(
                                FLAGS.train_dir,
                                FLAGS.fine_tune_checkpoint,
                                FLAGS.initialize_last_layer,
                                last_layers,
                                ignore_missing_vars=True),
                            summary_op=summary_op,
                            saver=tf.train.Saver(max_to_keep=50))
Пример #4
0
def main(unused_argv):
  tf.logging.set_verbosity(tf.logging.INFO)
  # Set up deployment (i.e., multi-GPUs and/or multi-replicas).
  config = model_deploy.DeploymentConfig(
      num_clones=FLAGS.num_clones,
      clone_on_cpu=FLAGS.clone_on_cpu,
      replica_id=FLAGS.task,
      num_replicas=FLAGS.num_replicas,
      num_ps_tasks=FLAGS.num_ps_tasks)

  # Split the batch across GPUs.
  assert FLAGS.train_batch_size % config.num_clones == 0, (
      'Training batch size not divisble by number of clones (GPUs).')

  clone_batch_size = FLAGS.train_batch_size / config.num_clones

  # Get dataset-dependent information.
  dataset = segmentation_dataset.get_dataset(
      FLAGS.dataset, FLAGS.train_split, dataset_dir=FLAGS.dataset_dir)

  tf.gfile.MakeDirs(FLAGS.train_logdir)
  tf.logging.info('Training on %s set', FLAGS.train_split)

  with tf.Graph().as_default():
    with tf.device(config.inputs_device()):
      samples = input_generator.get(
          dataset,
          FLAGS.train_crop_size,
          clone_batch_size,
          min_resize_value=FLAGS.min_resize_value,
          max_resize_value=FLAGS.max_resize_value,
          resize_factor=FLAGS.resize_factor,
          min_scale_factor=FLAGS.min_scale_factor,
          max_scale_factor=FLAGS.max_scale_factor,
          scale_factor_step_size=FLAGS.scale_factor_step_size,
          dataset_split=FLAGS.train_split,
          is_training=True,
          model_variant=FLAGS.model_variant)
      inputs_queue = prefetch_queue.prefetch_queue(
          samples, capacity=128 * config.num_clones)

    # Create the global step on the device storing the variables.
    with tf.device(config.variables_device()):
      global_step = tf.train.get_or_create_global_step()

      # Define the model and create clones.
      model_fn = _build_deeplab
      model_args = (inputs_queue, {
          common.OUTPUT_TYPE: dataset.num_classes
      }, dataset.ignore_label)
      clones = model_deploy.create_clones(config, model_fn, args=model_args)

      # Gather update_ops from the first clone. These contain, for example,
      # the updates for the batch_norm variables created by model_fn.
      first_clone_scope = config.clone_scope(0)
      update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS, first_clone_scope)

    # Gather initial summaries.
    summaries = set(tf.get_collection(tf.GraphKeys.SUMMARIES))

    # Add summaries for model variables.
    for model_var in slim.get_model_variables():
      summaries.add(tf.summary.histogram(model_var.op.name, model_var))

    # Add summaries for losses.
    for loss in tf.get_collection(tf.GraphKeys.LOSSES, first_clone_scope):
      summaries.add(tf.summary.scalar('losses/%s' % loss.op.name, loss))

    # Build the optimizer based on the device specification.
    with tf.device(config.optimizer_device()):
      learning_rate = train_utils.get_model_learning_rate(
          FLAGS.learning_policy, FLAGS.base_learning_rate,
          FLAGS.learning_rate_decay_step, FLAGS.learning_rate_decay_factor,
          FLAGS.training_number_of_steps, FLAGS.learning_power,
          FLAGS.slow_start_step, FLAGS.slow_start_learning_rate)
      optimizer = tf.train.MomentumOptimizer(learning_rate, FLAGS.momentum)
      summaries.add(tf.summary.scalar('learning_rate', learning_rate))

    startup_delay_steps = FLAGS.task * FLAGS.startup_delay_steps
    for variable in slim.get_model_variables():
      summaries.add(tf.summary.histogram(variable.op.name, variable))

    with tf.device(config.variables_device()):
      total_loss, grads_and_vars = model_deploy.optimize_clones(
          clones, optimizer)
      total_loss = tf.check_numerics(total_loss, 'Loss is inf or nan.')
      summaries.add(tf.summary.scalar('total_loss', total_loss))

      # Modify the gradients for biases and last layer variables.
      last_layers = model.get_extra_layer_scopes(
          FLAGS.last_layers_contain_logits_only)
      grad_mult = train_utils.get_model_gradient_multipliers(
          last_layers, FLAGS.last_layer_gradient_multiplier)
      if grad_mult:
        grads_and_vars = slim.learning.multiply_gradients(
            grads_and_vars, grad_mult)

      # Create gradient update op.
      grad_updates = optimizer.apply_gradients(
          grads_and_vars, global_step=global_step)
      update_ops.append(grad_updates)
      update_op = tf.group(*update_ops)
      with tf.control_dependencies([update_op]):
        train_tensor = tf.identity(total_loss, name='train_op')

    # Add the summaries from the first clone. These contain the summaries
    # created by model_fn and either optimize_clones() or _gather_clone_loss().
    summaries |= set(
        tf.get_collection(tf.GraphKeys.SUMMARIES, first_clone_scope))

    # Merge all summaries together.
    summary_op = tf.summary.merge(list(summaries))

    # Soft placement allows placing on CPU ops without GPU implementation.
    session_config = tf.ConfigProto(
        allow_soft_placement=True, log_device_placement=False)

    # Start the training.
    slim.learning.train(
        train_tensor,
        logdir=FLAGS.train_logdir,
        log_every_n_steps=FLAGS.log_steps,
        master=FLAGS.master,
        number_of_steps=FLAGS.training_number_of_steps,
        is_chief=(FLAGS.task == 0),
        session_config=session_config,
        startup_delay_steps=startup_delay_steps,
        init_fn=train_utils.get_model_init_fn(
            FLAGS.train_logdir,
            FLAGS.tf_initial_checkpoint,
            FLAGS.initialize_last_layer,
            last_layers,
            ignore_missing_vars=True),
        summary_op=summary_op,
        save_summaries_secs=FLAGS.save_summaries_secs,
        save_interval_secs=FLAGS.save_interval_secs)
Пример #5
0
def main(unused_argv):
    # Check model parameters
    check_model_conflict()

    data_inforamtion = data_generator._DATASETS_INFORMATION[FLAGS.dataset_name]
    tf.logging.set_verbosity(tf.logging.INFO)

    tf.gfile.MakeDirs(FLAGS.train_logdir)
    for split in FLAGS.train_split:
        tf.logging.info('Training on %s set', split)

    path = FLAGS.train_logdir
    parameters_dict = vars(FLAGS)
    with open(os.path.join(path, 'json.txt'), 'w', encoding='utf-8') as f:
        json.dump(parameters_dict, f, indent=3)

    with open(os.path.join(path, 'logging.txt'), 'w') as f:
        for key in parameters_dict:
            f.write("{}: {}".format(str(key), str(parameters_dict[key])))
            f.write("\n")
        f.write("\nStart time: {}".format(
            time.strftime("%Y-%m-%d %H:%M:%S", time.localtime())))
        f.write("\n")

    graph = tf.Graph()
    with graph.as_default():
        with tf.device(
                tf.train.replica_device_setter(ps_tasks=FLAGS.num_ps_tasks)):
            assert FLAGS.batch_size % FLAGS.num_clones == 0, (
                'Training batch size not divisble by number of clones (GPUs).')
            clone_batch_size = FLAGS.batch_size // FLAGS.num_clones

            if FLAGS.dataset_name == '2019_ISBI_CHAOS_MR_T1' or FLAGS.dataset_name == '2019_ISBI_CHAOS_MR_T2':
                min_resize_value = data_inforamtion.height
                max_resize_value = data_inforamtion.height
            else:
                if FLAGS.min_resize_value is not None:
                    min_resize_value = FLAGS.min_resize_value
                else:
                    min_resize_value = data_inforamtion.height

                if FLAGS.max_resize_value is not None:
                    max_resize_value = FLAGS.max_resize_value
                else:
                    max_resize_value = data_inforamtion.height

            train_generator = data_generator.Dataset(
                dataset_name=FLAGS.dataset_name,
                split_name=FLAGS.train_split,
                guidance_type=FLAGS.guidance_type,
                batch_size=clone_batch_size,
                pre_crop_flag=FLAGS.pre_crop_flag,
                mt_class=FLAGS.mt_output_node,
                crop_size=data_inforamtion.train["train_crop_size"],
                min_resize_value=FLAGS.min_resize_value,
                max_resize_value=FLAGS.max_resize_value,
                resize_factor=FLAGS.resize_factor,
                min_scale_factor=FLAGS.min_scale_factor,
                max_scale_factor=FLAGS.max_scale_factor,
                scale_factor_step_size=FLAGS.scale_factor_step_size,
                num_readers=2,
                is_training=True,
                shuffle_data=True,
                repeat_data=True,
                prior_num_slice=FLAGS.prior_num_slice,
                prior_num_subject=FLAGS.prior_num_subject,
                seq_length=FLAGS.seq_length,
                seq_type="bidirection",
                z_loss_name=FLAGS.z_loss_name,
            )

            if "val" not in FLAGS.train_split:
                val_generator = data_generator.Dataset(
                    dataset_name=FLAGS.dataset_name,
                    split_name=["val"],
                    guidance_type=FLAGS.guidance_type,
                    batch_size=1,
                    mt_class=FLAGS.mt_output_node,
                    crop_size=[
                        data_inforamtion.height, data_inforamtion.width
                    ],
                    min_resize_value=FLAGS.min_resize_value,
                    max_resize_value=FLAGS.max_resize_value,
                    num_readers=2,
                    is_training=False,
                    shuffle_data=False,
                    repeat_data=True,
                    prior_num_slice=FLAGS.prior_num_slice,
                    prior_num_subject=FLAGS.prior_num_subject,
                    seq_length=FLAGS.seq_length,
                    seq_type="bidirection",
                    z_loss_name=FLAGS.z_loss_name,
                )

            model_options = common.ModelOptions(
                outputs_to_num_classes=train_generator.num_of_classes,
                crop_size=data_inforamtion.train["train_crop_size"],
                output_stride=FLAGS.output_stride)

            steps = tf.compat.v1.placeholder(tf.int32, shape=[])

            dataset1 = train_generator.get_dataset()
            iter1 = dataset1.make_one_shot_iterator()
            train_samples = iter1.get_next()

            train_tensor, summary_op = _train_pgn_model(
                train_samples, train_generator.num_of_classes, model_options,
                train_generator.ignore_label)

            if "val" not in FLAGS.train_split:
                dataset2 = val_generator.get_dataset()
                iter2 = dataset2.make_one_shot_iterator()
                val_samples = iter2.get_next()

                val_tensor, _ = _val_pgn_model(val_samples,
                                               val_generator.num_of_classes,
                                               model_options,
                                               val_generator.ignore_label,
                                               steps)

            # Soft placement allows placing on CPU ops without GPU implementation.
            session_config = tf.ConfigProto(allow_soft_placement=True,
                                            log_device_placement=False)

            init_fn = None
            if FLAGS.tf_initial_checkpoint:
                init_fn = train_utils.get_model_init_fn(
                    train_logdir=FLAGS.train_logdir,
                    tf_initial_checkpoint=FLAGS.tf_initial_checkpoint,
                    initialize_first_layer=True,
                    initialize_last_layer=FLAGS.initialize_last_layer,
                    ignore_missing_vars=True)

            scaffold = tf.train.Scaffold(
                init_fn=init_fn,
                summary_op=summary_op,
            )

            stop_hook = tf.train.StopAtStepHook(FLAGS.training_number_of_steps)
            saver = tf.train.Saver()
            best_dice = 0
            with tf.train.MonitoredTrainingSession(
                    master=FLAGS.master,
                    is_chief=(FLAGS.task == 0),
                    config=session_config,
                    scaffold=scaffold,
                    checkpoint_dir=FLAGS.train_logdir,
                    log_step_count_steps=FLAGS.log_steps,
                    save_summaries_steps=20,
                    save_checkpoint_steps=FLAGS.save_checkpoint_steps,
                    hooks=[stop_hook]) as sess:

                # step=0
                total_val_loss, total_val_steps = [], []
                best_model_performance = 0.0
                while not sess.should_stop():
                    _, global_step = sess.run(
                        [train_tensor,
                         tf.train.get_global_step()])
                    if "val" not in FLAGS.train_split:
                        if global_step % FLAGS.validation_steps == 0:
                            cm_total = 0
                            for j in range(
                                    val_generator.splits_to_sizes["val"]):
                                cm_total += sess.run(val_tensor,
                                                     feed_dict={steps: j})

                            mean_dice_score, _ = metrics.compute_mean_dsc(
                                total_cm=cm_total)

                            total_val_loss.append(mean_dice_score)
                            total_val_steps.append(global_step)
                            plt.legend(["validation loss"])
                            plt.xlabel("global step")
                            plt.ylabel("loss")
                            plt.plot(total_val_steps, total_val_loss, "bo-")
                            plt.grid(True)
                            plt.savefig(FLAGS.train_logdir + "/losses.png")

                            if mean_dice_score > best_dice:
                                best_dice = mean_dice_score
                                saver.save(
                                    get_session(sess),
                                    os.path.join(FLAGS.train_logdir,
                                                 'model.ckpt-best'))
                                # saver.save(get_session(sess), os.path.join(FLAGS.train_logdir, 'model.ckpt-best-%d' %global_step))
                                txt = 20 * ">" + " saving best mdoel model.ckpt-best-%d with DSC: %f" % (
                                    global_step, best_dice)
                                print(txt)
                                with open(os.path.join(path, 'logging.txt'),
                                          'a') as f:
                                    f.write(txt)
                                    f.write("\n")

            with open(os.path.join(path, 'logging.txt'), 'a') as f:
                f.write("\nEnd time: {}".format(
                    time.strftime("%Y-%m-%d %H:%M:%S", time.localtime())))
                f.write("\n")