def train_classifier(self, max_epochs, train_dataloader,
                         validation_dataloader, comparison):
        epochs = []
        train_losses = []
        validation_accs = []

        early_stopping = EarlyStopping('{}/{}_classifier.pt'.format(
            self.model_name, self.dataset_name))

        for epoch in range(max_epochs):
            if early_stopping.early_stop:
                break

            for batch_idx, (data, labels) in enumerate(train_dataloader):
                self.Classifier.train()

                data = data.to(self.device)
                labels = labels.to(self.device)

                self.Classifier_optim.zero_grad()

                preds = self.Classifier(data)

                loss = self.Classifier_criterion(preds, labels)

                loss.backward()
                self.Classifier_optim.step()

                if comparison:
                    epochs.append(epoch)
                    train_losses.append(loss.item())
                    validation_accs.append(
                        accuracy(self.Classifier, validation_dataloader,
                                 self.device))

            val = accuracy(self.Classifier, validation_dataloader, self.device)

            print('Supervised Epoch: {} Validation acc: {}'.format(epoch, val))

            early_stopping(1 - val, self.Classifier)

        if early_stopping.early_stop:
            early_stopping.load_checkpoint(self.Classifier)

        return epochs, train_losses, validation_accs
Пример #2
0
    def train_classifier(self, max_epochs, train_dataloader,
                         validation_dataloader):
        epochs = []
        train_losses = []
        validation_accs = []

        early_stopping = EarlyStopping('{}/{}_inner.pt'.format(
            self.state_path, self.model_name))

        for epoch in range(max_epochs):
            if early_stopping.early_stop:
                break

            train_loss = 0
            for batch_idx, (data, labels) in enumerate(train_dataloader):
                self.SDAEClassifier.train()

                data = data.to(self.device)
                labels = labels.to(self.device)

                self.optimizer.zero_grad()

                predictions = self.SDAEClassifier(data)

                loss = self.criterion(predictions, labels)

                loss.backward()
                self.optimizer.step()

                train_loss += loss.item()

            if validation_dataloader is not None:
                acc = accuracy(self.SDAEClassifier, validation_dataloader,
                               self.device)
                validation_accs.append(acc)

                early_stopping(1 - acc, self.SDAEClassifier)

            epochs.append(epoch)
            train_losses.append(train_loss / len(train_dataloader))

        early_stopping.load_checkpoint(self.SDAEClassifier)

        return epochs, train_losses, validation_accs
Пример #3
0
    def full_train(self, unsupervised_dataset, train_dataset,
                   validation_dataset):
        self.reset_model()

        # TODO: don't use arbitrary values for batch size
        unsupervised_dataloader = DataLoader(dataset=unsupervised_dataset,
                                             batch_size=180,
                                             shuffle=True)
        supervised_dataloader = DataLoader(dataset=train_dataset,
                                           batch_size=20,
                                           shuffle=True)

        validation_dataloader = DataLoader(
            dataset=validation_dataset,
            batch_size=validation_dataset.__len__())

        for epoch in range(50):

            self.train_one_epoch(epoch, supervised_dataloader,
                                 unsupervised_dataloader)
            print('Epoch: {} Validation Acc: {}'.format(
                epoch,
                trainingutils.accuracy(self.D, validation_dataloader,
                                       self.device)))
Пример #4
0
 def test_model(self, test_dataloader):
     return accuracy(self.SDAEClassifier, test_dataloader, self.device)
Пример #5
0
    def full_test(self, test_dataset):
        test_dataloader = DataLoader(dataset=test_dataset,
                                     batch_size=test_dataset.__len__())

        return trainingutils.accuracy(self.D, test_dataloader, self.device)