Пример #1
0
    def backward_D_B(self):
        if self.opt.eval_to_dis:
            set_eval(self.netG_B)
            self.fake_A = self.netG_B.forward(self.real_B)
            self.netG_B.train()
        fake_A = self.fake_A_pool.query(self.fake_A)
        if self.opt.lambda_gp > 0:
            self.loss_D_B_real, self.loss_D_B_fake, self.loss_D_B_gp = self.backward_D_basic(self.netD_B, self.real_A, fake_A)

        else:
            self.loss_D_B_real, self.loss_D_B_fake = self.backward_D_basic(self.netD_B, self.real_A, fake_A)
            self.loss_D_B_gp = 0.0
Пример #2
0
    def backward_D_A(self):
        if self.opt.eval_to_dis:
            set_eval(self.netG_A)
            self.fake_B = self.netG_A.forward(self.real_A)
            self.netG_A.train()
        fake_B = self.fake_B_pool.query(self.fake_B)
 #	 fake_B_sr = self.fake_B_pool.query(self.fake_B_sr)
        if self.opt.lambda_gp > 0:
            self.loss_D_A_real, self.loss_D_A_fake, self.loss_D_A_gp = self.backward_D_basic(self.netD_A, self.real_B, fake_B)

	else:
            self.loss_D_A_real, self.loss_D_A_fake = self.backward_D_basic(self.netD_A, self.real_B, fake_B)

	    self.loss_D_A_gp = 0.0
Пример #3
0
def test_img(img,
             net,
             trans,
             size,
             eval_mode=True,
             bn_eval=True,
             drop_eval=True):
    img = trans(img)
    #input_ = img.view(-1, 3, size, size)
    input_ = img.unsqueeze(0)
    real = Variable(input_.cuda())
    util.set_eval(net, bn_eval, drop_eval)
    with torch.no_grad():
        fake = net.forward(real)
    return fake
Пример #4
0
    def backward_D_C(self):
        if self.opt.eval_to_dis:
            set_eval(self.netG_B)
            self.fake_A = self.netG_B.forward(self.real_B)
            self.netG_B.train()
	self.real_fea = self.netE_C(self.real_C)
	self.fake_fea = self.netE_A(self.real_A)
    #    fake_A = self.fake_A_pool.query(self.fake_A)
        if self.opt.lambda_gp > 0:
            self.loss_D_C_real, self.loss_D_C_fake, self.loss_D_C_gp = self.backward_D_basic(self.netD_C, self.real_fea, self.fake_fea)
	    self.loss_D_C_real *=5
	    self.loss_D_C_fake *=5
	    self.loss_D_C_gp *=5
	
        else:
            self.loss_D_C_real, self.loss_D_C_fake = 5*self.backward_D_basic(self.netD_C, self.real_fea, self.fake_fea)
            self.loss_D_C_gp = 0.0
Пример #5
0
 def backward_D_B(self):
     if self.opt.eval_to_dis:
         set_eval(self.netG_B)
         self.fake_A = self.netG_B.forward(self.real_B)
         self.netG_B.train()
     fake_A = self.fake_A_pool.query(self.fake_A)
Пример #6
0
    def initialize(self, opt):
        BaseModel.initialize(self, opt)

        nb = opt.batchSize
        size = opt.fineSize
        self.target_weight = []
        self.input_A = self.Tensor(nb, opt.input_nc, size, size)
        self.input_B = self.Tensor(nb, opt.output_nc, size, size)
        if opt.aux:
            self.A_aux = self.Tensor(nb, opt.input_nc, size, size)
            self.B_aux = self.Tensor(nb, opt.output_nc, size, size)

        self.netG_A = networks.define_G(opt.input_nc,
                                        opt.output_nc,
                                        opt.ngf,
                                        opt.which_model_netG,
                                        opt.norm,
                                        not opt.no_dropout,
                                        opt.init_type,
                                        self.gpu_ids,
                                        opt=opt)
        self.netG_A_running = networks.define_G(opt.input_nc,
                                                opt.output_nc,
                                                opt.ngf,
                                                opt.which_model_netG,
                                                opt.norm,
                                                not opt.no_dropout,
                                                opt.init_type,
                                                self.gpu_ids,
                                                opt=opt)
        set_eval(self.netG_A_running)
        accumulate(self.netG_A_running, self.netG_A, 0)
        self.netG_B = networks.define_G(opt.output_nc,
                                        opt.input_nc,
                                        opt.ngf,
                                        opt.which_model_netG,
                                        opt.norm,
                                        not opt.no_dropout,
                                        opt.init_type,
                                        self.gpu_ids,
                                        opt=opt)
        self.netG_B_running = networks.define_G(opt.output_nc,
                                                opt.input_nc,
                                                opt.ngf,
                                                opt.which_model_netG,
                                                opt.norm,
                                                not opt.no_dropout,
                                                opt.init_type,
                                                self.gpu_ids,
                                                opt=opt)
        set_eval(self.netG_B_running)
        accumulate(self.netG_B_running, self.netG_B, 0)
        if self.isTrain:
            use_sigmoid = opt.no_lsgan
            self.netD_A = networks.define_D(opt.output_nc,
                                            opt.ndf,
                                            opt.which_model_netD,
                                            opt.n_layers_D,
                                            opt.norm,
                                            use_sigmoid,
                                            opt.init_type,
                                            self.gpu_ids,
                                            opt=opt)
            self.netD_B = networks.define_D(opt.input_nc,
                                            opt.ndf,
                                            opt.which_model_netD,
                                            opt.n_layers_D,
                                            opt.norm,
                                            use_sigmoid,
                                            opt.init_type,
                                            self.gpu_ids,
                                            opt=opt)
        print('---------- Networks initialized -------------')
        networks.print_network(self.netG_A, opt,
                               (opt.input_nc, opt.fineSize, opt.fineSize))
        # networks.print_network(self.netG_B, opt)
        if self.isTrain:
            networks.print_network(self.netD_A, opt)
            # networks.print_network(self.netD_B, opt)
        print('-----------------------------------------------')

        if not self.isTrain or opt.continue_train:
            print('Loaded model')
            which_epoch = opt.which_epoch
            self.load_network(self.netG_A, 'G_A', which_epoch)
            self.load_network(self.netG_B, 'G_B', which_epoch)
            if self.isTrain:
                self.load_network(self.netG_A_running, 'G_A', which_epoch)
                self.load_network(self.netG_B_running, 'G_B', which_epoch)
                self.load_network(self.netD_A, 'D_A', which_epoch)
                self.load_network(self.netD_B, 'D_B', which_epoch)

        if self.isTrain and opt.load_path != '':
            print('Loaded model from load_path')
            which_epoch = opt.which_epoch
            load_network_with_path(self.netG_A,
                                   'G_A',
                                   opt.load_path,
                                   epoch_label=which_epoch)
            load_network_with_path(self.netG_B,
                                   'G_B',
                                   opt.load_path,
                                   epoch_label=which_epoch)
            load_network_with_path(self.netD_A,
                                   'D_A',
                                   opt.load_path,
                                   epoch_label=which_epoch)
            load_network_with_path(self.netD_B,
                                   'D_B',
                                   opt.load_path,
                                   epoch_label=which_epoch)

        if self.isTrain:
            self.old_lr = opt.lr
            self.fake_A_pool = ImagePool(opt.pool_size)
            self.fake_B_pool = ImagePool(opt.pool_size)
            # define loss functions
            if len(self.target_weight) == opt.num_D:
                print(self.target_weight)
                self.criterionGAN = networks.GANLoss(
                    use_lsgan=not opt.no_lsgan,
                    tensor=self.Tensor,
                    target_weight=self.target_weight,
                    gan=opt.gan)
            else:
                self.criterionGAN = networks.GANLoss(
                    use_lsgan=not opt.no_lsgan,
                    tensor=self.Tensor,
                    gan=opt.gan)
            self.criterionCycle = torch.nn.L1Loss()
            self.criterionIdt = torch.nn.L1Loss()
            self.criterionColor = networks.ColorLoss()
            # initialize optimizers
            self.optimizer_G = torch.optim.Adam(itertools.chain(
                self.netG_A.parameters(), self.netG_B.parameters()),
                                                lr=opt.lr,
                                                betas=(opt.beta1, 0.999))
            self.optimizer_D_A = torch.optim.Adam(self.netD_A.parameters(),
                                                  lr=opt.lr,
                                                  betas=(opt.beta1, 0.999))
            self.optimizer_D_B = torch.optim.Adam(self.netD_B.parameters(),
                                                  lr=opt.lr,
                                                  betas=(opt.beta1, 0.999))
            self.optimizers = []
            self.schedulers = []
            self.optimizers.append(self.optimizer_G)
            self.optimizers.append(self.optimizer_D_A)
            self.optimizers.append(self.optimizer_D_B)
            for optimizer in self.optimizers:
                self.schedulers.append(networks.get_scheduler(optimizer, opt))