help='compressing ration %') parser.add_argument('--path', default='wts/unsupervised_ratio10', help='path to pretrained model') parser.add_argument('--data', default='BSD68', help='which data to use') parser.add_argument('--outpath', default=None, help='where to save predictions') opts = parser.parse_args() ratio = opts.ratio / 100.0 if opts.path.endswith('.npz'): mfile = opts.path else: wts = opts.path msave = ut.ckpter(wts + '/iter_*.model.npz') mfile = msave.latest outpath = opts.outpath if outpath is not None: if not os.path.exists(outpath): os.makedirs(outpath) VLIST = 'data/%s.txt' % opts.data PSZ = 33 # Setup Graphs is_training = tf.placeholder_with_default(False, shape=[]) model = net.Net(is_training)
elif niter >= drop[0] and niter < drop[1]: return LR / np.sqrt(10.) else: return LR / 10.0 return LR VALFREQ = 2e2 SAVEFREQ = 1e4 MAXITER = drop[-1] if not os.path.exists(wts): os.makedirs(wts) ######################################################################### # Check for saved weights & optimizer states msave = ut.ckpter(wts + '/iter_*.model.npz') ssave = ut.ckpter(wts + '/iter_*.state.npz') ut.logopen(wts+'/train.log') niter = msave.iter ######################################################################### # Setup Graphs is_training = tf.placeholder_with_default(False, shape=[]) model = net.Net(is_training) # Images loading setup tset = Dataset(TLIST, KTLIST, BSZ, niter, rand_kernel=False) vset = Dataset(VLIST, KVLIST, BSZ, 0, isval=True) batch, swpT, swpV = tvSwap(tset, vset) imgs, left_kernels, right_kernels, left_ck, right_ck, seeds = batch