Пример #1
0
def main(args):
    model = utils.get_models(bert_config=args.bert_config,
                             pred_n_labels=args.pred_n_labels,
                             arg_n_labels=args.arg_n_labels,
                             n_arg_heads=args.n_arg_heads,
                             n_arg_layers=args.n_arg_layers,
                             pos_emb_dim=args.pos_emb_dim,
                             use_lstm=args.use_lstm,
                             device=args.device)
    if torch.cuda.is_available():
        map_location = lambda storage, loc: storage.cuda()
    else:
        map_location = 'cpu'
    model.load_state_dict(
        torch.load(args.model_path, map_location=map_location))
    model.zero_grad()
    model.eval()

    loader = load_data(data_path=args.test_data_path,
                       batch_size=args.batch_size,
                       tokenizer_config=args.bert_config,
                       train=False)
    start = time.time()
    extract(args, model, loader, args.save_path)
    print("TIME: ", time.time() - start)
    test_results = do_eval(args.save_path, args.test_gold_path)
    utils.print_results("TEST RESULT", test_results,
                        ["F1  ", "PREC", "REC ", "AUC "])
Пример #2
0
def video_process(video_path, pm_model, save_video_flag):
    video_thread = VideoThread(video_path, 1280, 960, 1, '视频线程')
    video_thread.start()
    serial_thread = SerialThread('串口线程')
    serial_thread.start()
    init_flag = True

    while True:
        frame_read = video_thread.get_image()

        if frame_read is None:
            print('获取视频失败!')
            break

        # if init_flag and save_video_flag:
        #     # 视频模式输出检测视频
        #     save_name = 'save_video.avi'
        #     print('保存视频到' + save_name)
        #     out_video = cv2.VideoWriter(save_name, cv2.VideoWriter_fourcc(*"MJPG"), 10.0,
        #                                 (frame_read.shape[1], frame_read.shape[0]))
        #     init_flag = False
        if init_flag:
            init_flag = False
            continue
        # [类别编号, 置信度, 中点坐标, 左上坐标, 右下坐标]
        boxes = pm_model.predict(frame_read)
        print_results(boxes, pm_model.label_names, init_flag)
        draw_results(frame_read, boxes, pm_model.colors, pm_model.label_names,
                     False)
        serial_thread.set_data(boxes)
Пример #3
0
def apply_calculations(options, set_points, test_points):
    dimension = len(set_points[0]) - 1
    random_polynomials = utils.generate_random_polynomials(dimension, options.max_polynomial_degree)

    set_points_min_max = utils.get_column_max_min(set_points)
    scaled_set_points = utils.scale_points(set_points, set_points_min_max)
    scaled_test_points = utils.scale_points(test_points, set_points_min_max)

    best_model = find_best_model(options, scaled_set_points, random_polynomials)
    best_model_with_best_lmbda = find_best_lmbda_for_model(options, best_model, random_polynomials, scaled_set_points,
                                                           scaled_test_points, set_points_min_max)

    utils.print_results(best_model_with_best_lmbda)
Пример #4
0
def main(args):
    utils.set_seed(args.seed)
    model = utils.get_models(bert_config=args.bert_config,
                             pred_n_labels=args.pred_n_labels,
                             arg_n_labels=args.arg_n_labels,
                             n_arg_heads=args.n_arg_heads,
                             n_arg_layers=args.n_arg_layers,
                             lstm_dropout=args.lstm_dropout,
                             mh_dropout=args.mh_dropout,
                             pred_clf_dropout=args.pred_clf_dropout,
                             arg_clf_dropout=args.arg_clf_dropout,
                             pos_emb_dim=args.pos_emb_dim,
                             use_lstm=args.use_lstm,
                             device=args.device)

    trn_loader = load_data(data_path=args.trn_data_path,
                           batch_size=args.batch_size,
                           max_len=args.max_len,
                           tokenizer_config=args.bert_config)
    dev_loaders = [
        load_data(data_path=cur_dev_path,
                  batch_size=args.dev_batch_size,
                  tokenizer_config=args.bert_config,
                  train=False) for cur_dev_path in args.dev_data_path
    ]
    args.total_steps = round(len(trn_loader) * args.epochs)
    args.warmup_steps = round(args.total_steps / 10)

    optimizer, scheduler = utils.get_train_modules(
        model=model,
        lr=args.learning_rate,
        total_steps=args.total_steps,
        warmup_steps=args.warmup_steps)
    model.zero_grad()
    summarizer = SummaryManager(args)
    print("\nTraining Starts\n")

    for epoch in tqdm(range(1, args.epochs + 1), desc='epochs'):
        trn_results = train(args, epoch, model, trn_loader, dev_loaders,
                            summarizer, optimizer, scheduler)

        # extraction on devset
        dev_iter = zip(args.dev_data_path, args.dev_gold_path, dev_loaders)
        dev_results = list()
        total_sum = 0
        for dev_input, dev_gold, dev_loader in dev_iter:
            dev_name = dev_input.split('/')[-1].replace('.pkl', '')
            output_path = os.path.join(
                args.save_path, f'epoch{epoch}_dev/end_epoch/{dev_name}')
            extract(args, model, dev_loader, output_path)
            dev_result = do_eval(output_path, dev_gold)
            utils.print_results(f"EPOCH{epoch} EVAL", dev_result,
                                ["F1  ", "PREC", "REC ", "AUC "])
            total_sum += dev_result[0] + dev_result[-1]
            dev_result.append(dev_result[0] + dev_result[-1])
            dev_results += dev_result
        summarizer.save_results([epoch] + trn_results + dev_results +
                                [total_sum])
        model_name = utils.set_model_name(total_sum, epoch)
        torch.save(model.state_dict(), os.path.join(args.save_path,
                                                    model_name))
    print("\nTraining Ended\n")
Пример #5
0
def train(args, epoch, model, trn_loader, dev_loaders, summarizer, optimizer,
          scheduler):
    total_pred_loss, total_arg_loss, trn_results = 0, 0, None
    epoch_steps = int(args.total_steps / args.epochs)

    iterator = tqdm(enumerate(trn_loader), desc='steps', total=epoch_steps)
    for step, batch in iterator:
        batch = map(lambda x: x.to(args.device), batch)
        token_ids, att_mask, single_pred_label, single_arg_label, all_pred_label = batch
        pred_mask = bio.get_pred_mask(single_pred_label)

        model.train()
        model.zero_grad()

        # feed to predicate model
        batch_loss, pred_loss, arg_loss = model(
            input_ids=token_ids,
            attention_mask=att_mask,
            predicate_mask=pred_mask,
            total_pred_labels=all_pred_label,
            arg_labels=single_arg_label)

        # get performance on this batch
        total_pred_loss += pred_loss.item()
        total_arg_loss += arg_loss.item()

        batch_loss.backward()
        nn.utils.clip_grad_norm_(model.parameters(), 1.0)
        optimizer.step()
        scheduler.step()

        trn_results = [
            total_pred_loss / (step + 1), total_arg_loss / (step + 1)
        ]
        if step > epoch_steps:
            break

        # interim evaluation
        if step % 1000 == 0 and step != 0:
            dev_iter = zip(args.dev_data_path, args.dev_gold_path, dev_loaders)
            dev_results = list()
            total_sum = 0
            for dev_input, dev_gold, dev_loader in dev_iter:
                dev_name = dev_input.split('/')[-1].replace('.pkl', '')
                output_path = os.path.join(
                    args.save_path, f'epoch{epoch}_dev/step{step}/{dev_name}')
                extract(args, model, dev_loader, output_path)
                dev_result = do_eval(output_path, dev_gold)
                utils.print_results(f"EPOCH{epoch} STEP{step} EVAL",
                                    dev_result,
                                    ["F1  ", "PREC", "REC ", "AUC "])
                total_sum += dev_result[0] + dev_result[-1]
                dev_result.append(dev_result[0] + dev_result[-1])
                dev_results += dev_result
            summarizer.save_results([step] + trn_results + dev_results +
                                    [total_sum])
            model_name = utils.set_model_name(total_sum, epoch, step)
            torch.save(model.state_dict(),
                       os.path.join(args.save_path, model_name))

        if step % args.summary_step == 0 and step != 0:
            utils.print_results(f"EPOCH{epoch} STEP{step} TRAIN", trn_results,
                                ["PRED LOSS", "ARG LOSS "])

    # end epoch summary
    utils.print_results(f"EPOCH{epoch} TRAIN", trn_results,
                        ["PRED LOSS", "ARG LOSS "])
    return trn_results
Пример #6
0
def train_model(model,
                criterion,
                optimizer,
                scheduler,
                dataloaders,
                dataset_sizes,
                model_path,
                device,
                fold_name,
                use_gpu=True,
                num_epochs=25,
                plot_res=True,
                predict_test=True,
                save_val=True,
                best='loss'):
    since = time.time()

    torch.save(model.state_dict(), os.path.join(model_path, '_temp'))
    best_f1 = 0.0
    best_loss = np.inf
    best_epoch = 0
    train_metrics = []
    val_metrics = []

    print('=' * 10)
    print('VAL data {}'.format(fold_name))
    print('=' * 10)

    for epoch in range(num_epochs):
        model.train(True)

        print('Epoch {}/{}'.format(epoch, num_epochs - 1))
        print('-' * 10)
        running_loss = 0.0
        pred = np.array([])
        true = np.array([])

        phase = 'train'

        for data in tqdm(dataloaders[phase]):
            optimizer.zero_grad()

            inputs, labels = data
            if use_gpu:
                inputs = Variable(inputs).to(device)
                labels = Variable(labels).to(device)
            else:
                inputs, labels = Variable(inputs), Variable(labels)

            outputs = model(inputs)

            loss = criterion(
                outputs.type(torch.cuda.FloatTensor)[:, 1],
                labels.type(torch.cuda.FloatTensor))
            #loss = nn.BCEWithLogitsLoss(reduction='sum',
            #                            weight=torch.ones(outputs.shape[0]).to(device) / 5)(outputs.type(torch.cuda.FloatTensor)[:, 1],
            #                 labels.type(torch.cuda.FloatTensor))
            loss.backward()
            optimizer.step()

            running_loss += loss.item()

            true = np.append(true, to_numpy(labels, use_gpu))
            pred = np.append(pred, sigmoid(to_numpy(outputs[:, 1], use_gpu)))

        epoch_loss = running_loss / dataset_sizes[phase]
        pr_rec_auc, roc_auc, f1_05, f1_max, f1_auc, metr = calc_metrics(
            true, pred)

        val_true, val_pred, val_loss = validation(model,
                                                  dataloaders,
                                                  criterion,
                                                  device=device,
                                                  use_gpu=use_gpu,
                                                  phase='val')

        pr_rec_auc_val, roc_auc_val, f1_05_val, f1_max_val, f1_auc_val, metr_val = calc_metrics(
            val_true, val_pred)
        if scheduler is not None:
            scheduler.step((val_loss) / dataset_sizes['val'])

        clear()
        clear_output()
        print('=' * 10)
        print('VAL data {}'.format(fold_name))
        print('=' * 10)
        print('Epoch {}/{}'.format(epoch, num_epochs - 1))
        print('-' * 10)
        print_results(phase=phase,
                      loss=epoch_loss,
                      roc_auc=roc_auc,
                      pr_rec_auc=pr_rec_auc,
                      f1_max=f1_max,
                      f1_05=f1_05,
                      f1_auc=f1_auc)
        print('\n')
        print_results(phase='val',
                      loss=(val_loss) / dataset_sizes['val'],
                      roc_auc=roc_auc_val,
                      pr_rec_auc=pr_rec_auc_val,
                      f1_max=f1_max_val,
                      f1_05=f1_05_val,
                      f1_auc=f1_auc_val)
        train_metrics.append(metr + [epoch_loss])
        val_metrics.append(metr_val + [(val_loss) / dataset_sizes['val']])

        if f1_05_val > best_f1:
            best_f1 = f1_05_val
            if best == 'metric':
                best_epoch = epoch
                torch.save(model.state_dict(),
                           os.path.join(model_path, '_temp'))

        if (val_loss) / dataset_sizes['val'] < best_loss:
            best_loss = (val_loss) / dataset_sizes['val']
            if best == 'loss':
                best_epoch = epoch
                torch.save(model.state_dict(),
                           os.path.join(model_path, '_temp'))

        time_elapsed = time.time() - since
        print('Elapsed {:.0f}m {:.0f}s\n'.format(time_elapsed // 60,
                                                 time_elapsed % 60))

        np.save(os.path.join(model_path, 'val_metrics_' + fold_name),
                val_metrics)
        np.save(os.path.join(model_path, 'train_metrics_' + fold_name),
                train_metrics)

        print('Current best: {:4f}, epoch {}'.format(best_f1, best_epoch))
        if plot_res:
            vizualize(model_path,
                      fold_name,
                      show=False,
                      save=True,
                      save_format='.png')

    time_elapsed = time.time() - since
    print('Training complete in {:.0f}m {:.0f}s'.format(
        time_elapsed // 60, time_elapsed % 60))
    print('Best val f1_05: {:4f}'.format(best_f1))
    print('Best val loss: {:4f}'.format(best_loss))
    if best is not None:
        model.load_state_dict(torch.load(os.path.join(model_path, '_temp')))

    vizualize(model_path, fold_name, show=False, save=True, save_format='.pdf')

    if predict_test:
        results = pd.DataFrame()
        test_true, test_pred, _ = validation(model,
                                             dataloaders,
                                             criterion,
                                             device=device,
                                             use_gpu=use_gpu,
                                             phase='test')
        results['pred'] = test_pred
        results['pseudo_true'] = test_true
        results['file'] = [
            sample[0] for sample in dataloaders['test'].dataset.samples
        ]
        results.to_csv(os.path.join(model_path,
                                    'test_results_' + fold_name + '.csv'),
                       index=False)
    if save_val:
        results = pd.DataFrame()
        val_true, val_pred, _ = validation(model,
                                           dataloaders,
                                           criterion,
                                           device=device,
                                           use_gpu=use_gpu,
                                           phase='val')
        results['true'] = val_true
        results['pred'] = val_pred
        results['file'] = [
            sample[0] for sample in dataloaders['val'].dataset.samples
        ]
        results.to_csv(os.path.join(model_path,
                                    'val_results_' + fold_name + '.csv'),
                       index=False)
    del inputs, labels, loss
    return model, best_f1
    def eval_epoch(self, final=False, save_predictions=False):
        """
        Evaluate the model on the test set.
        No backward computation is allowed.
        """
        t1 = time()
        output = {
            'tp': [],
            'fp': [],
            'fn': [],
            'tn': [],
            'loss': [],
            'preds': [],
            'truth': [],
            'true': 0,
            'true_sep': np.zeros(self.rel_size)
        }
        test_info = []
        test_result = []
        self.model.eval()
        test_iter = self.iterator(self.data['test'],
                                  batch_size=self.params['batch'],
                                  shuffle_=False)
        # preds=[]
        # truths=[]
        for batch_idx, batch in enumerate(test_iter):
            batch = self.convert_batch(batch, istrain=False, save=True)

            with torch.no_grad():
                loss, stats, predictions, select, pred_pairs, multi_truths, mask, _ = self.model(
                    batch)  # pred_pairs <#pair, relations_num>
                pred_pairs = torch.sigmoid(pred_pairs)

                output['loss'] += [loss.item()]
                output['tp'] += [stats['tp'].to('cpu').data.numpy()]
                output['fp'] += [stats['fp'].to('cpu').data.numpy()]
                output['fn'] += [stats['fn'].to('cpu').data.numpy()]
                output['tn'] += [stats['tn'].to('cpu').data.numpy()]
                output['preds'] += [predictions.to('cpu').data.numpy()]
                # preds.extend(predictions.to('cpu').data.numpy())
                # truths.extend(truth.to('cpu').data.numpy())

                if True:
                    test_infos = batch['info'][
                        select[0].to('cpu').data.numpy(),
                        select[1].to('cpu').data.numpy(),
                        select[2].to('cpu').data.numpy()][mask.to(
                            'cpu').data.numpy()]
                    test_info += [test_infos]

            pred_pairs = pred_pairs.data.cpu().numpy()
            multi_truths = multi_truths.data.cpu().numpy()
            output['true'] += multi_truths.sum(
            ) - multi_truths[:, self.loader.label2ignore].sum()
            output['true_sep'] = output['true_sep'] + multi_truths.sum(axis=0)
            if save_predictions:
                assert test_infos.shape[0] == len(pred_pairs), print(
                    "test info=%d, pred_pair=%d" %
                    (len(test_infos.shape[0]), len(pred_pairs)))
            for pair_id in range(len(pred_pairs)):
                multi_truth = multi_truths[pair_id]  #第pair_id个实体对的true
                for r in range(0, self.rel_size):
                    if r == self.loader.label2ignore:
                        continue

                    test_result.append((int(multi_truth[r]) == 1,
                                        float(pred_pairs[pair_id][r]),
                                        test_infos[pair_id]['intrain'],
                                        test_infos[pair_id]['cross'],
                                        self.loader.index2rel[r], r,
                                        len(test_info) - 1, pair_id))

        # estimate performance
        total_loss, scores = self.performance(output)
        # pairs*rel_size*batch
        test_result.sort(key=lambda x: x[1], reverse=True)

        input_theta, w, f1, p, r, scores_class = self.tune_f1_theta(
            test_result,
            output['true'],
            output['true_sep'],
            self.params['input_theta'],
            isTest=save_predictions)

        t2 = time()
        if not final:
            self.test_res['loss'] += [total_loss]
            # self.test_res['score'] += [scores[self.primary_metric]]
            self.test_res['score'] += [f1]
            self.test_res['p'] = p
            self.test_res['r'] = r
        print('            TEST  | LOSS = {:.05f}, '.format(total_loss),
              end="")
        print_results(scores, scores_class, self.show_class, t2 - t1)
        # print("不同类别:")
        # t = classification_report(truths, preds,target_names=["NA","父母子女", "祖孙", "兄弟姐妹", "叔伯姑舅姨", "夫妻", "其他亲戚", "好友", "上下级", "师生", "合作", "情侣", "对立", "共现", "同学", "同门"])
        # print(t)

        if save_predictions:

            test_result = test_result[:w + 1]
            test_result_pred = []
            test_result_info = []
            for item in test_result:
                test_result_pred.append([(item[-3], item[1])])  #预测的关系是的概率
                test_result_info.append([test_info[item[-2]][item[-1]]])
                assert (
                    item[-3]
                    in test_info[item[-2]][item[-1]]['rel']) == item[0], print(
                        "item\n", item, "\n", test_info[item[-2]][item[-1]])
            write_errors(test_result_pred,
                         test_result_info,
                         self.preds_file,
                         map_=self.loader.index2rel,
                         type="theta")
            write_preds(test_result_pred,
                        test_result_info,
                        self.preds_file,
                        map_=self.loader.index2rel)
        # f1_score_t=f1_score(truths, preds, average='micro')
        # print(f1, scores['micro_f'], f1_score_t)

        return f1, scores['micro_f'], input_theta, p, r
    def train_epoch(self, epoch):
        """
        Evaluate the model on the train set.
        """
        t1 = time()
        output = {
            'tp': [],
            'fp': [],
            'fn': [],
            'tn': [],
            'loss': [],
            'preds': [],
            'true': 0,
            'ttotal': []
        }
        self.acc_NA.clear()
        self.acc_not_NA.clear()
        self.acc_total.clear()

        self.model.train()
        # 多个batch的数据
        train_iter = self.iterator(self.data['train'],
                                   batch_size=self.params['batch'],
                                   shuffle_=self.params['shuffle_data'])

        for batch_idx, batch in enumerate(train_iter):
            # print("batch_idx", batch_idx)
            batch = self.convert_batch(batch, istrain=True)

            # with autograd.detect_anomaly():
            self.optimizer.zero_grad()
            loss, stats, predictions, select, pred_pairs, multi_truths, mask, relation_label = self.model(
                batch)
            pred_pairs = torch.sigmoid(pred_pairs)
            # self.optimizer.zero_grad()
            loss.backward()  # backward computation

            nn.utils.clip_grad_norm_(self.model.parameters(),
                                     self.gc)  # gradient clipping
            self.optimizer.step()  # update
            if self.scheduler != None:
                self.scheduler.step()

            relation_label = relation_label.to('cpu').data.numpy()
            predictions = predictions.to('cpu').data.numpy()
            # batches
            output['loss'] += [float(loss.item())]
            output['tp'] += [stats['tp'].to('cpu').data.numpy()]
            output['fp'] += [stats['fp'].to('cpu').data.numpy()]
            output['fn'] += [stats['fn'].to('cpu').data.numpy()]
            output['tn'] += [stats['tn'].to('cpu').data.numpy()]
            output['preds'] += [predictions]
            output['ttotal'] += [stats['ttotal']]

            for i in range(predictions.shape[0]):
                label = relation_label[i]
                if label < 0:
                    break
                if label == self.loader.label2ignore:
                    self.acc_NA.add(predictions[i] == label)
                else:
                    self.acc_not_NA.add(predictions[i] == label)
                self.acc_total.add(predictions[i] == label)
        # 一个epoch
        total_loss, scores = self.performance(output)
        t2 = time()

        self.train_res['loss'] += [total_loss]
        self.train_res['score'] += [scores[self.primary_metric]]
        self.train_res['p'] += [scores['micro_p']]
        self.train_res['r'] += [scores['micro_r']]

        print(
            'Epoch: {:02d} | TRAIN | LOSS = {:.05f}, | NA acc: {:4.2f} | not NA acc: {:4.2f}  | tot acc: {:4.2f}'
            .format(epoch, total_loss, self.acc_NA.get(),
                    self.acc_not_NA.get(), self.acc_total.get()),
            end="")
        print_results(scores, [], False, t2 - t1)
        print("TTotal\t", sum(output['ttotal']))
        return scores['micro_f']
Пример #9
0
    def eval_epoch(self, final=False, save_predictions=False):
        """
        Evaluate the model on the test set.
        No backward computation is allowed.
        """
        t1 = time()
        output = {
            'tp': [],
            'fp': [],
            'fn': [],
            'tn': [],
            'loss': [],
            'preds': [],
            'true': 0
        }
        test_info = []
        test_result = []
        self.model.eval()
        test_iter = self.iterator(self.data['test'],
                                  batch_size=self.params['batch'],
                                  shuffle_=False)
        for batch_idx, batch in enumerate(test_iter):
            batch = self.convert_batch(batch, istrain=False, save=True)

            with torch.no_grad():
                loss, stats, predictions, select, pred_pairs, multi_truths, mask, _ = self.model(
                    batch)  # pred_pairs <#pair, relations_num>
                pred_pairs = torch.sigmoid(pred_pairs)

                output['loss'] += [loss.item()]
                output['tp'] += [stats['tp'].to('cpu').data.numpy()]
                output['fp'] += [stats['fp'].to('cpu').data.numpy()]
                output['fn'] += [stats['fn'].to('cpu').data.numpy()]
                output['tn'] += [stats['tn'].to('cpu').data.numpy()]
                output['preds'] += [predictions.to('cpu').data.numpy()]

                if True:
                    test_infos = batch['info'][
                        select[0].to('cpu').data.numpy(),
                        select[1].to('cpu').data.numpy(),
                        select[2].to('cpu').data.numpy()][mask.to(
                            'cpu').data.numpy()]
                    test_info += [test_infos]

            pred_pairs = pred_pairs.data.cpu().numpy()
            multi_truths = multi_truths.data.cpu().numpy()
            output['true'] += multi_truths.sum(
            ) - multi_truths[:, self.loader.label2ignore].sum()
            if save_predictions:
                assert test_infos.shape[0] == len(pred_pairs), print(
                    "test info=%d, pred_pair=%d" %
                    (len(test_infos.shape[0]), len(pred_pairs)))
            for pair_id in range(len(pred_pairs)):
                multi_truth = multi_truths[pair_id]
                for r in range(0, self.rel_size):
                    if r == self.loader.label2ignore:
                        continue

                    test_result.append((int(multi_truth[r]) == 1,
                                        float(pred_pairs[pair_id][r]),
                                        test_infos[pair_id]['intrain'],
                                        test_infos[pair_id]['cross'],
                                        self.loader.index2rel[r], r,
                                        len(test_info) - 1, pair_id))

        # estimate performance
        total_loss, scores = self.performance(output)

        test_result.sort(key=lambda x: x[1], reverse=True)
        input_theta, w, f1 = self.tune_f1_theta(test_result,
                                                output['true'],
                                                self.params['input_theta'],
                                                isTest=save_predictions)

        t2 = time()
        if not final:
            self.test_res['loss'] += [total_loss]
            # self.test_res['score'] += [scores[self.primary_metric]]
            self.test_res['score'] += [f1]
        print('            TEST  | LOSS = {:.05f}, '.format(total_loss),
              end="")
        print_results(scores, [], self.show_class, t2 - t1)
        print()

        if save_predictions:

            test_result = test_result[:w + 1]
            test_result_pred = []
            test_result_info = []
            for item in test_result:
                test_result_pred.append([(item[-3], item[1])])
                test_result_info.append([test_info[item[-2]][item[-1]]])
                assert (
                    item[-3]
                    in test_info[item[-2]][item[-1]]['rel']) == item[0], print(
                        "item\n", item, "\n", test_info[item[-2]][item[-1]])
            write_errors(test_result_pred,
                         test_result_info,
                         self.preds_file,
                         map_=self.loader.index2rel,
                         type="theta")
            write_preds(test_result_pred,
                        test_result_info,
                        self.preds_file,
                        map_=self.loader.index2rel)

        return f1, scores['micro_f'], input_theta