Пример #1
0
def main():
    # Set the random seed for reproducible experiments
    torch.manual_seed(230)

    parser = argparse.ArgumentParser()
    parser.add_argument('--data_dir', help="Directory containing the dataset")
    parser.add_argument('--model_dir', help="Directory containing params.json")
    parser.add_argument('--params', help='Directory containing params.json')
    parser.add_argument('--restore_file',
                        default='best',
                        help="name of the file in --model_dir \
                         containing weights to load")

    params = utils.Params(args.params)

    # Get the logger
    utils.set_logger(os.path.join(params.model_dir, 'evaluate.log'))

    # Create the input data pipeline
    logging.info("Creating the dataset...")

    test_dataset = dataset(file_path=params.metadata_file,
                           split="Test",
                           classes=params.classes)

    test_loader = DataLoader(dataset=test_dataset,
                             batch_size=params.batch_size,
                             shuffle=True,
                             num_workers=8)

    logging.info("- done.")

    # Define the model and optimizer
    if model != "Inception":
        net = importlib.import_module("features.models.{}".format(
            params.model))
        model = net.Net()
        inception = False
    else:
        model = models.inception_v3(pretrained=False)
        model.fc = nn.Linear(2048, num_classes)
        model.AuxLogits.fc = nn.Linear(768, 1)
        inception = True

    model.cuda()

    metrics_save = metrics_code.metrics_save

    logging.info("Starting evaluation")

    # Reload weights from the saved file
    utils.load_checkpoint(
        os.path.join(args.model_dir, args.restore_file + '.pth.tar'), model)

    # Evaluate
    test_metrics = evaluate(model, test_loader, metrics_save, experiment,
                            inception)
    save_path = os.path.join(model_dir,
                             "metrics_test_{}.json".format(restore_file))
    utils.save_dict_to_json(test_metrics, save_path)
Пример #2
0
def train_single_model(params):
    # use GPU if available
    params['cuda'] = torch.cuda.is_available()

    # log into the appropriate directory
    utils.set_logger(os.path.join('train.log'))

    # Set the random seed for reproducible experiments
    torch.manual_seed(1337)
    if params.cuda: torch.cuda.manual_seed(1337)

    # dynamic import of net
    net = import_module('model.{}'.format(params.model_name))
    model = net.Net(params).cuda() if params.cuda else net.Net(params)
    if params.cuda and params.multi_gpu == 1 and torch.cuda.device_count() > 1:
        print('Using', torch.cuda.device_count(), 'GPUs.')
        model = nn.DataParallel(model)

    # Create the input data pipeline
    logging.info("Loading the datasets...")
    dataloaders = data_loader.fetch_dataloader(['train', 'test'], data_dir,
                                               params)
    train_dl = dataloaders['train']
    val_dl = dataloaders['test']

    optimizer = optim.Adam(model.parameters(), lr=params.learning_rate)

    # fetch loss function and metrics
    loss_fn = net.loss_fn
    metrics = net.metrics

    # Train the model
    logging.info("Starting training for {} epoch(s)".format(params.num_epochs))
    train_and_evaluate(model, train_dl, val_dl, optimizer, loss_fn, metrics,
                       params, 'experiments/' + params.exp_name, restore_file)
def main():
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

    args = parser.parse_args()
    set_logger(log_file=args.log_file, debug_mode=args.debug_mode)

    torch.manual_seed(args.random_seed)
    torch.cuda.manual_seed(args.random_seed)
    cudnn.benchmark = True

    train_loader = VideoIter(dataset_path=args.dataset_path,
                             annotation_path=args.annotation_path,
                             clip_length=args.clip_length,
                             frame_stride=args.frame_interval,
                             video_transform=build_transforms(),
                             name='Features extraction')

    train_iter = torch.utils.data.DataLoader(
        train_loader,
        batch_size=args.batch_size,
        shuffle=False,
        num_workers=args.num_workers,  # 4, # change this part accordingly
        pin_memory=True)

    # Loading network
    if args.feature_extractor == 'c3d':
        network = C3D(pretrained=args.pretrained_c3d)
    elif args.feature_extractor == 'resnet':
        network = resnet(200)
    network.load_state_dict(
        torch.load('network/r3d200_K_200ep.pth')['state_dict'])
    network = network.to(device)

    if not path.exists(args.save_dir):
        mkdir(args.save_dir)

    features_writer = FeaturesWriter()

    for i_batch, (data, target, sampled_idx, dirs,
                  vid_names) in tqdm(enumerate(train_iter)):
        with torch.no_grad():
            outputs = network(data.to(device)).detach().cpu().numpy()

            for i, (dir, vid_name, start_frame) in enumerate(
                    zip(dirs, vid_names,
                        sampled_idx.cpu().numpy())):
                dir = path.join(args.save_dir, dir)
                features_writer.write(feature=outputs[i],
                                      video_name=vid_name,
                                      idx=start_frame,
                                      dir=dir)

    features_writer.dump()
Пример #4
0
def main(problem, model, hparams, experiment_dir, restore_dir, test_dir,
         overwrite_results, skip_generate_data):
    set_random_seed(230)
    tf.gfile.MakeDirs(experiment_dir)

    # Check that we are not overwriting some previous experiment
    if not overwrite_results:
        model_dir_has_best_weights = os.path.isdir(
            os.path.join(experiment_dir, "best_weights"))
        overwriting = model_dir_has_best_weights and restore_dir is None
        assert not overwriting, "Weights found in model_dir, aborting to avoid overwrite"

    utils.set_logger(os.path.join(experiment_dir, 'train.log'))

    # initialize the GoTrainer
    my_trainer = trainer.GoTrainer(problem, model, hparams, experiment_dir,
                                   skip_generate_data)
    # train and evaluate network on dev split
    my_trainer.train_and_evaluate(restore_from=restore_dir)

    utils.set_logger(os.path.join(experiment_dir, 'test.log'))
    # evaluate the network on test split
    my_trainer.test(test_dir)
    params.mode = args.mode
    if params.gpu_id >= -1:
        params.cuda = True

    # Set the random seed for reproducible experiments
    torch.manual_seed(params.seed)
    np.random.seed(params.seed)
    random.seed(params.seed)
    if params.gpu_id >= -1:
        torch.cuda.manual_seed(params.seed)
    torch.backends.cudnn.deterministic = False # must be True to if you want reproducible,but will slow the speed

    cudnn.benchmark = True # https://discuss.pytorch.org/t/what-does-torch-backends-cudnn-benchmark-do/5936
    torch.cuda.empty_cache() # release cache
    # Set the logger
    utils.set_logger(os.path.join(experiment_path, 'certify_sigma_'+ str(args.sigma).replace('.','')+'.log'))

    logger = logging.getLogger()

    port,env = 8097,params.model_version
    columnnames,rownames = list(range(1,params.model_args["num_class"]+1)),list(range(1,params.model_args["num_class"]+1))


    # log all params
    d_args = vars(args)
    for k in d_args.keys():
        logging.info('{0}: {1}'.format(k, d_args[k]))
    d_params = vars(params)
    for k in d_params.keys():
        logger.info('{0}: {1}'.format(k, d_params[k]))
Пример #6
0
                        help='async/not-async requests')
    parser.add_argument('--config',
                        '-c',
                        type=str,
                        default=None,
                        help='fullpath to conf.json')
    parser.add_argument('--datapath',
                        '-d',
                        type=str,
                        default='./data/bible.txt')
    FLAGS = parser.parse_args()

    if not os.path.exists(FLAGS.folder):
        make_directory(FLAGS.folder)

    set_logger(os.path.join(FLAGS.folder, 'train.log'))
    if FLAGS.config is None:
        try:
            FLAGS.config = os.path.join(FLAGS.folder, 'config.json')
        except FileNotFoundError:
            raise FileNotFoundError('config.json is not found!')
    params = Params(jsonpath=FLAGS.config)

    logging.info('Start word2vec training pipeline! Params:')
    logging.info(json.dumps(params.__dict__, indent=True))

    if params.model not in ['hier_softmax', 'neg_sampling']:
        raise NotImplementedError(f"{params.model} model is not supported!")

    # load data:
    logging.info('Loading data:')
    DIR_DATA_ALL = DIR_CURRENT / 'data' / 'processed' / args.data_compressed
    DIR_DATA_EACH = DIR_CURRENT / 'data' / \
        'processed' / args.data_compressed / 'each_trial'
    DIR_LOG = DIR_CURRENT / 'results' / 'logs'
    folder_name = str(args.exp + "_" + args.decode_type +
                      "_" + str(args.tap_size))
    # TODO: Fix below checkpoint path when open sourcing the code
    DIR_CHECK = DIR_CURRENT / 'results' / 'checkpoints' / folder_name
    # DIR_CHECK = Path("/media/snakagom/UUI/Dropbox/UH/phd_aim1/results/checkpoints") / folder_name
    DIR_FIMPORTANCE = DIR_CURRENT / 'results' / 'feature_importance' / folder_name
    DIR_RESULTS_SUMMARY_EACH = DIR_CURRENT / 'results' / \
        'summary' / folder_name / 'each_trial'
    # Define log file
    log_fname = "fi_" + args.exp + "_" + args.decode_type + \
        "_" + str(args.tap_size) + args.name_log
    log = set_logger(str(DIR_LOG), log_fname)
    # Check the directories to save files and create if it doesn't exist
    dir_maker(DIR_DATA_ALL)
    dir_maker(DIR_DATA_EACH)
    dir_maker(DIR_LOG)
    dir_maker(DIR_CHECK)
    dir_maker(DIR_FIMPORTANCE)
    dir_maker(DIR_RESULTS_SUMMARY_EACH)

    CHAN_INFO = Path("chan46.csv")
    assert CHAN_INFO.is_file(), "Channel location file doesn't exist."
    with open(str(CHAN_INFO)) as csvfile:
        chan_info = list(csv.reader(csvfile))[0]
    chan_info.append('Baseline') # We will run without any permutation at last

    # use GPU if available
Пример #8
0
    if params.gpu_id >= -1:
        params.cuda = True

    # Set the random seed for reproducible experiments
    torch.manual_seed(params.seed)
    np.random.seed(params.seed)
    random.seed(params.seed)
    if params.gpu_id >= -1:
        torch.cuda.manual_seed(params.seed)
    torch.backends.cudnn.deterministic = False  # must be True to if you want reproducible,but will slow the speed

    cudnn.benchmark = True  # https://discuss.pytorch.org/t/what-does-torch-backends-cudnn-benchmark-do/5936
    torch.cuda.empty_cache()  # release cache
    # Set the logger
    if params.mode == 'train':
        utils.set_logger(os.path.join(experiment_path, 'train.log'))
    elif params.mode == 'test':
        utils.set_logger(os.path.join(experiment_path, 'test.log'))
    elif params.mode == 'load_train':
        utils.set_logger(os.path.join(experiment_path, 'load_train.log'))

    logger = logging.getLogger()

    port, env = 8098, args.visdom_env
    columnnames, rownames = list(range(
        1, params.model_args["num_class"] + 1)), list(
            range(1, params.model_args["num_class"] + 1))
    loss_logger = VisdomPlotLogger('line',
                                   port=port,
                                   opts={
                                       'title':
    # Set the random seed for reproducible experiments
    seed = 42
    torch.manual_seed(seed)
    random.seed(seed)
    torch.backends.cudnn.deterministic = True
    np.random.seed(seed)
    if torch.cuda.is_available():
        torch.cuda.manual_seed(seed)

    # Set the logger
    log_dir = os.path.join(args.model_dir_transfer, "logs")
    if not os.path.exists(log_dir):
        print("Making log directory {}".format(log_dir))
        os.mkdir(log_dir)
    utils.set_logger(os.path.join(log_dir, "train.log"))

    # Create the input data pipeline
    logging.info("Loading the datasets...")

    # fetch dataloaders
    params_transfer.encoding = params_transfer.encoding_source
    train_dl = dataloader.fetch_dataloader(
        args.data_dir, args.txt_train, 'train', params_transfer)

    val_dl_source = dataloader.fetch_dataloader(
        args.data_dir, args.txt_val_source, 'val', params_transfer)

    params_transfer.encoding = params_transfer.encoding_target
    val_dl_target = dataloader.fetch_dataloader(
        args.data_dir, args.txt_val_target, 'val', params_transfer)
Пример #10
0

if __name__ == '__main__':

    parser = argparse.ArgumentParser(description='Chinese NER Task')
    parser.add_argument('--model',
                        type=str,
                        required=True,
                        help='choose a model: bilstm, bilstm_crf, hmm,cnn')
    args = parser.parse_args()

    model_name = args.model
    import_model = import_module('model.' + model_name)
    config = import_model.Config()
    random_seed(config.seed)
    set_logger(config.logging_dir)

    # load data
    if args.model == 'hmm':
        processor = HMMDataProcessor(config.data_dir, config.do_lower_case)
    else:
        processor = DataProcessor(config.data_dir, config.do_lower_case)

    train_examples = processor.get_train_examples()
    config.train_num_examples = len(train_examples)
    dev_examples = processor.get_dev_examples()
    config.dev_num_examples = len(dev_examples)
    test_examples = processor.get_test_examples()
    config.test_num_examples = len(test_examples)
    config.label_list = processor.get_tagging()
    config.num_label = len(config.label_list)
Пример #11
0
def main():
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

    args = parser.parse_args()
    set_logger(log_file=args.log_file, debug_mode=args.debug_mode)

    torch.manual_seed(args.random_seed)
    torch.cuda.manual_seed(args.random_seed)
    cudnn.benchmark = True

    train_loader = VideoIterTrain(
        dataset_path=args.dataset_path,
        annotation_path=args.annotation_path,
        clip_length=args.clip_length,
        frame_stride=args.train_frame_interval,
        video_transform=build_transforms(),
        name='train',
        return_item_subpath=False,
    )

    train_iter = torch.utils.data.DataLoader(
        train_loader,
        batch_size=args.batch_size,
        shuffle=False,
        num_workers=32,  # 4, # change this part accordingly
        pin_memory=True)

    val_loader = VideoIterTrain(
        dataset_path=args.dataset_path,
        annotation_path=args.annotation_path_test,
        clip_length=args.clip_length,
        frame_stride=args.val_frame_interval,
        video_transform=build_transforms(),
        name='val',
        return_item_subpath=False,
    )

    val_iter = torch.utils.data.DataLoader(
        val_loader,
        batch_size=args.batch_size,
        shuffle=False,
        num_workers=32,  # 4, # change this part accordingly
        pin_memory=True)

    network = C3D(pretrained=args.pretrained_3d)
    network.to(device)

    if not path.exists(features_dir):
        mkdir(features_dir)

    features_writer = FeaturesWriter()

    for i_batch, (data, target, sampled_idx, dirs,
                  vid_names) in tqdm(enumerate(train_iter)):
        with torch.no_grad():
            outputs = network(data.cuda())

            for i, (dir, vid_name, start_frame) in enumerate(
                    zip(dirs, vid_names,
                        sampled_idx.cpu().numpy())):
                dir = path.join(features_dir, dir)
                features_writer.write(feature=outputs[i],
                                      video_name=vid_name,
                                      start_frame=start_frame,
                                      dir=dir)

    features_writer.dump()

    features_writer = FeaturesWriter()
    for i_batch, (data, target, sampled_idx, dirs,
                  vid_names) in tqdm(enumerate(val_iter)):
        with torch.no_grad():
            outputs = network(data.cuda())

            for i, (dir, vid_name, start_frame) in enumerate(
                    zip(dirs, vid_names,
                        sampled_idx.cpu().numpy())):
                dir = path.join(features_dir, dir)
                features_writer.write(feature=outputs[i],
                                      video_name=vid_name,
                                      start_frame=start_frame,
                                      dir=dir)

    features_writer.dump()
Пример #12
0
if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument('--data_dir',
                        default='data/',
                        help="Directory to dataset")
    parser.add_argument('--experiment_dir',
                        default='experiments/base_model',
                        help="Directory to experiment")
    parser.add_argument(
        '--checkpoint_dir',
        help="Reload weights from .pth.tar file ('best' or 'last')")
    args = parser.parse_args()

    # Set the logger
    utils.set_logger(os.path.join(args.experiment_dir, 'train.log'))

    # Import configs
    config_dir = args.experiment_dir + '/config.yaml'
    cfg.merge_from_file(config_dir)
    cfg.freeze()

    # Fix seed
    tf.random.set_seed(0)

    # Fetch dataloaders
    logging.info("Loading datasets...\n")

    train_dl, test_dl = dataloaders.load_mnist()

    # Load model, optimizer, loss
Пример #13
0
def main(args):
    model_prefix = '{}_{}'.format(args.model_type, args.train_id)

    log_path = args.LOG_DIR + model_prefix + '/'
    checkpoint_path = args.CHK_DIR + model_prefix + '/'
    result_path = args.RESULT_DIR + model_prefix + '/'
    cp_file = checkpoint_path + "best_model.pth.tar"
    init_epoch = 0

    if not os.path.exists(log_path):
        os.makedirs(log_path)
    if not os.path.exists(checkpoint_path):
        os.makedirs(checkpoint_path)

    ## set up the logger
    set_logger(os.path.join(log_path, 'train.log'))

    ## save argparse parameters
    with open(log_path + 'args.yaml', 'w') as f:
        for k, v in args.__dict__.items():
            f.write('{}: {}\n'.format(k, v))

    logging.info('Training model: {}'.format(model_prefix))

    ## set up vocab txt
    setup(args, clear=True)
    print(args.__dict__)

    # indicate src and tgt language
    en, zh = 'en', 'zh'

    maps = {'en': args.TRAIN_VOCAB_EN, 'zh': args.TRAIN_VOCAB_ZH}
    vocab_en = read_vocab(maps[en])
    tok_en = Tokenizer(language=en,
                       vocab=vocab_en,
                       encoding_length=args.MAX_INPUT_LENGTH)
    vocab_zh = read_vocab(maps[zh])
    tok_zh = Tokenizer(language=zh,
                       vocab=vocab_zh,
                       encoding_length=args.MAX_INPUT_LENGTH)
    logging.info('Vocab size en/zh:{}/{}'.format(len(vocab_en), len(vocab_zh)))

    ## Setup the training, validation, and testing dataloaders
    train_loader, val_loader, test_loader = create_split_loaders(
        args.DATA_DIR, (tok_en, tok_zh),
        args.batch_size,
        args.MAX_VID_LENGTH, (en, zh),
        num_workers=4,
        pin_memory=True)
    logging.info('train/val/test size: {}/{}/{}'.format(
        len(train_loader), len(val_loader), len(test_loader)))

    ## init model
    encoder = Encoder(embed_size=args.wordembed_dim,
                      hidden_size=args.enc_hid_size).cuda()
    decoder = Decoder(embed_size=args.wordembed_dim,
                      hidden_size=args.dec_hid_size,
                      vocab_size_en=len(vocab_en),
                      vocab_size_zh=len(vocab_zh)).cuda()

    encoder.train()
    decoder.train()

    ## define loss
    criterion = nn.CrossEntropyLoss(ignore_index=padding_idx).cuda()
    ## init optimizer
    dec_optimizer = torch.optim.Adam(params=filter(lambda p: p.requires_grad,
                                                   decoder.parameters()),
                                     lr=args.decoder_lr,
                                     weight_decay=args.weight_decay)
    enc_optimizer = torch.optim.Adam(params=filter(lambda p: p.requires_grad,
                                                   encoder.parameters()),
                                     lr=args.encoder_lr,
                                     weight_decay=args.weight_decay)

    count_paras(encoder, decoder, logging)

    ## track loss during training
    total_train_loss, total_val_loss = [], []
    best_val_bleu_en, best_val_bleu_zh, best_epoch = 0, 0, 0

    ## init time
    zero_time = time.time()

    # Begin training procedure
    earlystop_flag = False
    rising_count = 0

    for epoch in range(init_epoch, args.epochs):
        ## train for one epoch
        start_time = time.time()
        train_loss = train(train_loader, encoder, decoder, criterion,
                           enc_optimizer, dec_optimizer, epoch)

        val_loss, sentbleu_en, corpbleu_en = validate(val_loader, encoder,
                                                      decoder, criterion,
                                                      tok_en, tok_zh)
        end_time = time.time()

        epoch_time = end_time - start_time
        total_time = end_time - zero_time

        logging.info(
            'Total time used: %s Epoch %d time uesd: %s train loss: %.4f val loss: %.4f corpbleu-en: %.4f'
            % (str(datetime.timedelta(seconds=int(total_time))), epoch,
               str(datetime.timedelta(seconds=int(epoch_time))), train_loss,
               val_loss, corpbleu_en))

        if corpbleu_en > best_val_bleu_en:
            best_val_bleu_en = corpbleu_en
            save_checkpoint(
                {
                    'epoch': epoch,
                    'enc_state_dict': encoder.state_dict(),
                    'dec_state_dict': decoder.state_dict(),
                    'enc_optimizer': enc_optimizer.state_dict(),
                    'dec_optimizer': dec_optimizer.state_dict(),
                }, cp_file)
            best_epoch = epoch

        logging.info("Finished {0} epochs of training".format(epoch + 1))

        total_train_loss.append(train_loss)
        total_val_loss.append(val_loss)

    logging.info('Best corpus bleu score en-{:.4f} at epoch {}'.format(
        best_val_bleu_en, best_epoch))

    ### the best model is the last model saved in our implementation
    logging.info('************ Start eval... ************')
    eval(test_loader, encoder, decoder, cp_file, tok_en, tok_zh, result_path)
Пример #14
0
    args = parser.parse_args()
    json_path = os.path.join(args.model_dir, 'params.json')
    assert os.path.isfile(
        json_path), "No json configuration file found at {}".format(json_path)
    params = utils.Params(json_path)

    # use GPU if available
    params.cuda = torch.cuda.is_available()  # use GPU is available

    # Set the random seed for reproducible experiments
    torch.manual_seed(230)
    if params.cuda:
        torch.cuda.manual_seed(230)

    # Get the logger
    utils.set_logger(os.path.join(args.model_dir, 'test.log'))

    # Create the input data pipeline
    logging.info("Creating the dataset...")

    # fetch dataloaders
    dataloaders = data_loader.fetch_data_loader(['test'], args.data_dir,
                                                params)
    test_dl = dataloaders['test']

    logging.info("getting the test dataloader - done.")

    # Define the model
    model = Net().cuda() if params.cuda else Net()

    loss_fn = loss_fn
def run_training(train_dl, val_dl, multi_gpu=[0, 1]):
    set_logger(LOG_PATH)
    logging.info('\n\n')
    #---
    if MODEL == 'UNetResNet34':
        net = UNetResNet34(debug=False).cuda(device=device)

#     for param in net.named_parameters():
#         if param[0][:8] in ['decoder5']:#'decoder5', 'decoder4', 'decoder3', 'decoder2'
#             param[1].requires_grad = False

    train_params = filter(lambda p: p.requires_grad, net.parameters())
    optimizer = torch.optim.SGD(train_params, momentum=0.9, weight_decay=0.0001, lr=LearningRate)
    scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='max', 
                                                       factor=0.5, patience=4,
                                                       verbose=False, threshold=0.0001, 
                                                       threshold_mode='rel', cooldown=0, 
                                                       min_lr=0, eps=1e-08)
    
    if warm_start:
        logging.info('warm_start: '+last_checkpoint_path)
        net, _ = load_checkpoint(last_checkpoint_path, net)
    
    # using multi GPU
    if multi_gpu is not None:
        net = nn.DataParallel(net, device_ids=multi_gpu)

    diff = 0
    best_val_metric = -0.1
    optimizer.zero_grad()
    
    for i_epoch in range(NUM_EPOCHS):
        ## adjust learning rate
        #scheduler.step(epoch=i_epoch)
        #print('lr: %f'%scheduler.get_lr()[0])
        
        t0 = time.time()
        # iterate through trainset
        if multi_gpu is not None:
            net.module.set_mode('train')
        else:
            net.set_mode('train')
        train_loss_list, train_metric_list = [], []
        for i, (image, masks) in enumerate(train_dl):            
            input_data = image.to(device=device, dtype=torch.float)
            truth = masks.to(device=device, dtype=torch.float)
            #set_trace()
            logit = net(input_data)
            
            if multi_gpu is not None:
                _train_loss  = net.module.criterion(logit, truth)
                _train_metric  = net.module.metric(logit, truth)
            else:
                _train_loss  = net.criterion(logit, truth)
                _train_metric  = net.metric(logit, truth)
            train_loss_list.append(_train_loss.item())
            train_metric_list.append(_train_metric.item())

            #grandient accumulation step=2
            acc_step = GradientAccStep
            _train_loss = _train_loss / acc_step
            _train_loss.backward()
            if (i+1)%acc_step==0:
                optimizer.step()
                optimizer.zero_grad()

        train_loss = np.mean(train_loss_list)
        train_metric = np.mean(train_metric_list)

        # compute valid loss & metrics (concatenate valid set in cpu, then compute loss, metrics on full valid set)
        net.module.set_mode('valid')
        with torch.no_grad():
            val_loss_list, val_metric_list = [], []
            for i, (image, masks) in enumerate(val_dl):
                input_data = image.to(device=device, dtype=torch.float)
                truth = masks.to(device=device, dtype=torch.float)
                logit = net(input_data)
                
                if multi_gpu is not None:
                    _val_loss  = net.module.criterion(logit, truth)
                    _val_metric  = net.module.metric(logit, truth)
                else:
                    _val_loss  = net.criterion(logit, truth)
                    _val_metric  = net.metric(logit, truth)
                val_loss_list.append(_val_loss.item())
                val_metric_list.append(_val_metric.item())

            val_loss = np.mean(val_loss_list)
            val_metric = np.mean(val_metric_list)

        # Adjust learning_rate
        scheduler.step(val_metric)
        
        #force to at least train N epochs
        if i_epoch>=-1:
            if val_metric > best_val_metric:
                best_val_metric = val_metric
                is_best = True
                diff = 0
            else:
                is_best = False
                diff += 1
                if diff > early_stopping_round:
                    logging.info('Early Stopping: val_metric does not increase %d rounds'%early_stopping_round)
                    break
        else:
            is_best = False

        #save checkpoint
        checkpoint_dict = \
        {
            'epoch': i,
            'state_dict': net.module.state_dict() if multi_gpu is not None else net.state_dict(),
            'optim_dict' : optimizer.state_dict(),
            'metrics': {'train_loss': train_loss, 'val_loss': val_loss, 
                        'train_metric': train_metric, 'val_metric': val_metric}
        }
        save_checkpoint(checkpoint_dict, is_best=is_best, checkpoint=checkpoint_path)

        #if i_epoch%20==0:
        if i_epoch>-1:
            logging.info('[EPOCH %05d]train_loss, train_metric: %0.5f, %0.5f; val_loss, val_metric: %0.5f, %0.5f; time elapsed: %0.1f min'%(i_epoch, train_loss.item(), train_metric.item(), val_loss.item(), val_metric.item(), (time.time()-t0)/60))
Пример #16
0
    #for reproducibility
    tf.compat.v1.set_random_seed(123)

    args = parser.parse_args()
    params_path = os.path.join(args.model_dir, 'params.json')
    assert os.path.isfile(
        params_path), "params.json does not exits at {}".format(params_path)
    params = Params(params_path)
    params.load(params.update)

    #TODO: check and load if there's the best weights so far
    #     model_dir_has_best_weights = os.path.isdir(os.path.join(args.model_dir, "best_weights"))

    #set logger
    set_logger(os.path.join(args.model_dir, 'train.log'))

    #train/test split
    train_fpaths, test_fpaths, train_targets, test_targets = \
        get_train_test_split(args.json_path, args.data_dir, train_size=args.train_size)

    params.train_size = len(train_fpaths)
    params.test_size = len(test_fpaths)

    logging.info("Creating the dataset...")
    train_inputs = input_fn(True, train_fpaths, train_targets, params)
    test_inputs = input_fn(False, test_fpaths, test_targets, params)

    logging.info("Creating the model...")
    train_model_spec = model_fn(True, train_inputs, params)
    test_model_spec = model_fn(False, test_inputs, params, reuse=True)
Пример #17
0
def predict(inp, target, params, restore_from, config=None,\
            model_dir='./ie590_project/experiments/ex1', model_save_dir='./ie590_project/experiments/ex1/model_save/1'):
    """predict target values given input file paths
    Args:
        inp: (list) a string list of image files paths; 2D -> [sample_size, number_of_channels]
        model_spec: (dict) model specifications of tf Ops
        params: (Params or str) Params object or params.joson path
        tar: (list) a float list of target values
        restore_from: (str) ckpt or directory name where ckpts are located for restoring
        ...
    Return:
        out: (list) a list of precicted target values; have exactly same dimension as target
    """

    assert len(inp) == len(target)

    iterator_init_op = model_spec['iterator_init_op']
    update_metrics_op = model_spec['update_metrics_op']
    metrics = model_spec['metrics']
    metrics_init_op = model_spec['metrics_init_op']
    predictions = model_spec['predictions']

    saver = tf.compat.v1.train.Saver()

    if type(params) is str:
        assert os.path.isfile(
            params), "params.json does not exits at {}".format(params)
        params = Params(params)
        params.load(params.update)  # load parameters
    params.inp_size = len(inp)

    set_logger(os.path.join(model_dir, 'train.log'))

    logging.info("Creating the dataset...")
    inputs = input_fn(False, inp, target, params)

    logging.info("Creating the model...")
    model_spec = model_fn(False, inputs, params)

    logging.info("Calculating predictions...")
    with tf.compat.v1.Session(config=config) as sess:
        sess.run(model_spec['variable_init_op'])

        save_path = os.path.join(model_save_dir, restore_from)
        if os.path.isdir(save_path):
            save_path = tf.train.latest_checkpoint(
                save_path
            )  # If restore_from is a directory, get the latest ckpt
        saver.restore(sess, save_path)

        num_steps = (params.inp_size + params.batch_size -
                     1) // params.batch_size

        sess.run([iterator_init_op, metrics_init_op])

        if len(np.shape(target)) == 1:
            out = np.empty(np.shape(target))[:, np.newaxis]
        else:
            out = np.empty(np.shape(target))
        for i in tqdm(range(num_steps)):
            _, predictions_eval = sess.run([update_metrics_op, predictions])
            if i < num_steps - 1:
                out[i * params.batch_size:(i + 1) *
                    params.batch_size, :] = predictions_eval
            else:
                out[i * params.batch_size:, :] = predictions_eval

    return out
Пример #18
0
 def set_logger(self):
     self.log = utils.set_logger(out_folder=self.config['out_folder'],
                                 name="sub_log")
     self.log.info(f"{self.config}")
Пример #19
0
def train(sess, args):

  config_path = 'model_{}/config.json'.format(args.model_num)
  with open(config_path, 'r') as f:
    config = json.load(f)

  patch_size = config['patch_size']
  batch_size = config['batch_size']
  num_steps = config['num_steps']
  quan_scale = config['quan_scale']

  overload_log = args.overload_log
  load_ckpt = args.load_ckpt


  if load_ckpt == 'on' or overload_log == 'off':
    utils.set_logger(log_path)

    logging.info('Not overload_log')

  else:
    utils.set_logger(log_path, mode='w')

    logging.info('Overload_log')


  global global_var
  additional_param = args.additional_param
  if additional_param == '0':
    pass
  elif additional_param == '1':
    pass
  elif additional_param == '2':
    pass
  elif additional_param == '3':
    pass


  data_batch, handle_placeholder, train_handle, valid_handle, valid_iterator = data_loader.get_train_and_valid_data_batch(sess, train_data_list, valid_data_list, batch_size, flip_ud=False, flip_lr=False, rot_90=False)

  # print(sess.run(data_batch))
  # return

  # Avoid summary info
  logging.getLogger().setLevel(logging.WARNING)

  output_train = encoder(data_batch, patch_size, quan_scale, is_training=True)
  output_train = decoder(output_train, quan_scale, is_training=True)

  loss_op_train = get_loss(data_batch, output_train)
  train_op, global_step_op, learning_rate_op = optimize(loss_op_train, config)


  # -----
  output_eval = encoder(data_batch, patch_size, quan_scale, is_training=False, reuse=True)
  output_eval = decoder(output_eval, quan_scale, is_training=False, reuse=True)

  loss_op_eval = get_loss(data_batch, output_eval)
  #-----

  saver = tf.train.Saver()
  if load_ckpt == 'on':
    saver.restore(sess, model_param_path)

    logging.info('Load previous params')
  else:
    variable_init = tf.global_variables_initializer()
    sess.run(variable_init)


  # saver.save(sess, model_param_path)
  # logging.info('Model paremeters saved to: {}'.format(model_param_path))
  # return


  utils.add_trainable_variables_to_summary()
  if args.summary_save == 'on':
    summary_writer = tf.summary.FileWriter(summary_path, sess.graph)
  merged_summaries = tf.summary.merge_all()

  options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE)
  run_metadata = tf.RunMetadata()
  many_runs_timeline = utils.TimeLiner()

  # Avoid summary info
  logging.getLogger().setLevel(logging.INFO)

  logging.info('-----')
  logging.info(args)
  logging.info(config)
  logging.info('-----')

  # debug mode
  if args.debug_mode == 'on':
    logging.info('-----')
    logging.info('Debug mode')
    logging.info('-----')

    return


  train_loss_display_step = 200
  valid_loss_display_step = 20000

  global_step = sess.run(global_step_op)

  # normal train
  for step in range(global_step + 1, num_steps + 1):
    if step % train_loss_display_step == 0:
      if args.summary_save == 'on':
        _, loss, global_step, learning_rate_value, summary_value = sess.run([train_op, loss_op_train, global_step_op, learning_rate_op, merged_summaries], feed_dict={handle_placeholder: train_handle}, options=options, run_metadata=run_metadata)
      else:
        _, loss, global_step, learning_rate_value = sess.run([train_op, loss_op_train, global_step_op, learning_rate_op], feed_dict={handle_placeholder: train_handle}, options=options, run_metadata=run_metadata)

      logging.info('Step: {:d}, loss: {:.8f}, lr: {:.8f}'.format(global_step, loss, learning_rate_value))

      if step % valid_loss_display_step == 0:
        sess.run(valid_iterator.initializer)

        [valid_loss] = sess.run([loss_op_eval], feed_dict={handle_placeholder: valid_handle}, options=options, run_metadata=run_metadata)
        logging.info('Valid loss: {:.8f}'.format(valid_loss))

      if args.param_save == 'on':
        saver.save(sess, model_param_path)
        # logging.info('Model paremeters saved to: {}'.format(model_param_path))

      if args.summary_save == 'on':
        summary_writer.add_summary(summary_value, global_step=global_step)
        # logging.info('Summaries saved to: {}'.format(summary_path))

    else:
      _, loss, global_step = sess.run([train_op, loss_op_train, global_step_op], feed_dict={handle_placeholder: train_handle}, options=options, run_metadata=run_metadata)

    if args.timeline_save == 'on':
      many_runs_timeline.update_timeline(run_metadata.step_stats)

    # logging.info('{}_{}'.format(step, global_step))

  if args.timeline_save == 'on':
    many_runs_timeline.save(timeline_path)
    logging.info('Timeline saved to: {}'.format(timeline_path))
Пример #20
0
    if params.gpu_id >= -1:
        params.cuda = True

    # Set the random seed for reproducible experiments
    torch.manual_seed(params.seed)
    np.random.seed(params.seed)
    random.seed(params.seed)
    if params.gpu_id >= -1:
        torch.cuda.manual_seed(params.seed)
    torch.backends.cudnn.deterministic = False # must be True to if you want reproducible,but will slow the speed

    cudnn.benchmark = True # https://discuss.pytorch.org/t/what-does-torch-backends-cudnn-benchmark-do/5936
    torch.cuda.empty_cache() # release cache
    # Set the logger
    if args.targeted:
        utils.set_logger(os.path.join(experiment_path, 'beta_' + str(int(args.beta)) +  str(int(args.beta*10)) + '_target_'+str(args.target_label) + '_attack.log'))
    else:
        utils.set_logger(os.path.join(experiment_path, 'beta_' + str(int(args.beta)) +  str(int(args.beta*10)) + '_untarget_' + 'attack.log'))

    logger = logging.getLogger()

    port,env = 8097,params.model_version
    columnnames,rownames = list(range(1,params.model_args["num_class"]+1)),list(range(1,params.model_args["num_class"]+1))


    # log all params
    d_args = vars(args)
    for k in d_args.keys():
        logging.info('{0}: {1}'.format(k, d_args[k]))
    d_params = vars(params)
    for k in d_params.keys():
def run_check_net(train_dl, val_dl, multi_gpu=[0, 1]):
    set_logger(LOG_PATH)
    logging.info('\n\n')
    #---
    if MODEL == 'UNetResNet34':
        net = UNetResNet34(debug=False).cuda(device=device)
    #elif MODEL == 'RESNET18':
    #    net = AtlasResNet18(debug=False).cuda(device=device)

#     for param in net.named_parameters():
#         if param[0][:8] in ['decoder5']:#'decoder5', 'decoder4', 'decoder3', 'decoder2'
#             param[1].requires_grad = False

# dummy sgd to see if it can converge ...
#optimizer = torch.optim.SGD(filter(lambda p: p.requires_grad, net.parameters()),
#                  lr=LearningRate, momentum=0.9, weight_decay=0.0001)
#optimizer = torch.optim.Adam(filter(lambda p: p.requires_grad, net.parameters()), lr=0.045)#LearningRate
#scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='max',
#                                                       factor=0.5, patience=4,#4 resnet34
#                                                       verbose=False, threshold=0.0001,
#                                                       threshold_mode='rel', cooldown=0,
#                                                       min_lr=0, eps=1e-08)
#scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size, gamma=0.9, last_epoch=-1)
    train_params = filter(lambda p: p.requires_grad, net.parameters())
    optimizer = torch.optim.SGD(train_params,
                                momentum=0.9,
                                weight_decay=0.0001,
                                lr=LearningRate)
    scheduler = LR_Scheduler(
        'poly', LearningRate, NUM_EPOCHS,
        len(train_dl))  #lr_scheduler=['poly', 'step', 'cos']

    if warm_start:
        logging.info('warm_start: ' + last_checkpoint_path)
        net, _ = load_checkpoint(last_checkpoint_path, net)

    # using multi GPU
    if multi_gpu is not None:
        net = nn.DataParallel(net, device_ids=multi_gpu)

    #use sync_batchnorm
    #net = convert_model(net)

    diff = 0
    best_val_metric = -0.1
    optimizer.zero_grad()

    #seed = get_seed()
    #seed = SEED
    #logging.info('aug seed: '+str(seed))
    #ia.imgaug.seed(seed)
    #np.random.seed(seed)

    for i_epoch in range(NUM_EPOCHS):
        t0 = time.time()
        # iterate through trainset
        if multi_gpu is not None:
            net.module.set_mode('train')
        else:
            net.set_mode('train')
        train_loss_list = []
        #train_metric_list
        #logit_list, truth_list = [], []
        for i, (images, masks) in enumerate(train_dl):
            ## adjust learning rate
            scheduler(optimizer, i, i_epoch, best_val_metric)

            input_data = images.to(device=device, dtype=torch.float)
            #1 for non-zero-mask
            truth = (torch.sum(masks.reshape(masks.size()[0],
                                             masks.size()[1], -1),
                               dim=2,
                               keepdim=False) != 0).to(device=device,
                                                       dtype=torch.float)
            logit = net(input_data)

            #logit_list.append(logit)
            #truth_list.append(truth)

            if multi_gpu is not None:
                _train_loss = net.module.criterion(logit, truth)
                #_train_metric = net.module.metric(logit, truth)#device='gpu'
            else:
                _train_loss = net.criterion(logit, truth)
                #_train_metric = net.metric(logit, truth)#device='gpu'
            train_loss_list.append(_train_loss.item())
            #train_metric_list.append(_train_metric.item())#.detach()

            #grandient accumulation step=2
            acc_step = 1
            _train_loss = _train_loss / acc_step
            _train_loss.backward()
            if (i + 1) % acc_step == 0:
                optimizer.step()
                optimizer.zero_grad()

        train_loss = np.mean(train_loss_list)
        #train_metric = np.mean(train_metric_list)
        #         if multi_gpu is not None:
        #             train_metric, train_tn, train_fp, train_fn, train_tp, train_auc, train_pos_percent = net.module.metric(torch.cat(logit_list, dim=0), torch.cat(truth_list, dim=0))
        #         else:
        #             train_metric, train_tn, train_fp, train_fn, train_tp, train_auc, train_pos_percent = net.metric(torch.cat(logit_list, dim=0), torch.cat(truth_list, dim=0))

        # compute valid loss & metrics (concatenate valid set in cpu, then compute loss, metrics on full valid set)
        net.module.set_mode('valid')
        with torch.no_grad():
            #             val_loss_list, val_metric_list = [], []
            #             for i, (image, masks) in enumerate(val_dl):
            #                 input_data = image.to(device=device, dtype=torch.float)
            #                 truth = masks.to(device=device, dtype=torch.float)
            #                 logit = net(input_data)

            #                 if multi_gpu is not None:
            #                     _val_loss  = net.module.criterion(logit, truth)
            #                     _val_metric  = net.module.metric(logit, truth)#device='gpu'
            #                 else:
            #                     _val_loss  = net.criterion(logit, truth)
            #                     _val_metric  = net.metric(logit, truth)#device='gpu'
            #                 val_loss_list.append(_val_loss.item())
            #                 val_metric_list.append(_val_metric.item())#.detach()

            #             val_loss = np.mean(val_loss_list)
            #             val_metric = np.mean(val_metric_list)

            logit_valid, truth_valid = None, None
            for j, (images, masks) in enumerate(val_dl):
                input_data = images.to(device=device, dtype=torch.float)
                #1 for non-zero-mask
                truth = (torch.sum(masks.reshape(masks.size()[0],
                                                 masks.size()[1], -1),
                                   dim=2,
                                   keepdim=False) != 0).to(device=device,
                                                           dtype=torch.float)
                logit = net(input_data)

                if logit_valid is None:
                    logit_valid = logit
                    truth_valid = truth
                else:
                    logit_valid = torch.cat((logit_valid, logit), dim=0)
                    truth_valid = torch.cat((truth_valid, truth), dim=0)
            if multi_gpu is not None:
                val_loss = net.module.criterion(logit_valid, truth_valid)
                _, val_metric, val_tn, val_fp, val_fn, val_tp, val_pos_percent = net.module.metric(
                    logit_valid, truth_valid)
            else:
                val_loss = net.criterion(logit_valid, truth_valid)
                _, val_metric, val_tn, val_fp, val_fn, val_tp, val_pos_percent = net.metric(
                    logit_valid, truth_valid)

        # Adjust learning_rate
        #scheduler.step(val_metric)
        #
        if i_epoch >= 30:
            if val_metric > best_val_metric:
                best_val_metric = val_metric
                is_best = True
                diff = 0
            else:
                is_best = False
                diff += 1
                if diff > early_stopping_round:
                    logging.info(
                        'Early Stopping: val_metric does not increase %d rounds'
                        % early_stopping_round)
                    #print('Early Stopping: val_iou does not increase %d rounds'%early_stopping_round)
                    break
        else:
            is_best = False

        #save checkpoint
        checkpoint_dict = \
        {
            'epoch': i_epoch,
            'state_dict': net.module.state_dict() if multi_gpu is not None else net.state_dict(),
            'optim_dict' : optimizer.state_dict(),
            'metrics': {'train_loss': train_loss, 'val_loss': val_loss,
                        'val_metric': val_metric}
        }
        save_checkpoint(checkpoint_dict,
                        is_best=is_best,
                        checkpoint=checkpoint_path)

        #if i_epoch%20==0:
        if i_epoch > -1:
            logging.info(
                '[EPOCH %05d]train_loss: %0.5f; val_loss, val_metric: %0.5f, %0.5f'
                % (i_epoch, train_loss.item(), val_loss.item(), val_metric))
            logging.info('val_pos_percent: %.3f' % (val_pos_percent))
            logging.info('val (tn, fp, fn, tp): %d, %d, %d, %d' %
                         (val_tn, val_fp, val_fn, val_tp))
            logging.info('time elapsed: %0.1f min' % ((time.time() - t0) / 60))
Пример #22
0
def train(sess, args):
    load_ckpt = args.load_ckpt

    batch_size = 64
    num_steps = 300000
    boundaries = [200000, 300000]
    lr_values = [1e-4, 1e-5, 1e-6]

    log_path = str(cur_file_dir / 'train.log')
    model_param_dir = str(cur_file_dir / 'params')
    Path(model_param_dir).mkdir(parents=True, exist_ok=True)
    model_param_path = model_param_dir + '/params'

    if load_ckpt == 'on':
        utils.set_logger(log_path)

        logging.info('Not overload_log')

    else:
        utils.set_logger(log_path, mode='w')

        logging.info('Overload_log')

    train_data_list = 'data_info/recons_train_data_patch_list.txt'
    valid_data_list = 'data_info/recons_valid_data_patch_list.txt'

    # train_data_list = 'data_info/train_data_patch_list_128.txt'
    # valid_data_list = 'data_info/valid_data_patch_list_128.txt'

    data_batch, handle_placeholder, train_handle, valid_handle, valid_iterator = get_train_and_valid_data_batch(
        sess, train_data_list, valid_data_list, batch_size)

    # print(sess.run(data_batch))
    # return

    # Avoid summary info
    logging.getLogger().setLevel(logging.WARNING)

    recons_data, ori_data = data_batch

    # # -----
    #   variable_init = tf.global_variables_initializer()
    #   sess.run(variable_init)

    #   ori_data_value = sess.run(data_batch, feed_dict={handle_placeholder: train_handle})

    #   # print(type(recons_data_value))
    #   print(type(ori_data_value))
    #   # print(recons_data_value.shape)
    #   print(ori_data_value[0].shape, ori_data_value[1].shape)

    #   return

    output = model(recons_data)

    loss_op = get_loss(ori_data, output)

    train_op, global_step_op, learning_rate_op = optimize(
        loss_op, boundaries, lr_values)

    saver = tf.train.Saver()
    if load_ckpt == 'on':
        saver.restore(sess, model_param_path)

        logging.info('Load previous params')
    else:
        variable_init = tf.global_variables_initializer()
        sess.run(variable_init)

    # saver.save(sess, model_param_path)
    # logging.info('Model paremeters saved to: {}'.format(model_param_path))
    # return

    # Avoid summary info
    logging.getLogger().setLevel(logging.INFO)

    logging.info('-----')
    logging.info(args)
    logging.info('-----')

    train_loss_display_step = 200
    valid_loss_display_step = 20000

    global_step = sess.run(global_step_op)

    # normal train
    for step in range(global_step + 1, num_steps + 1):
        _, loss, global_step, learning_rate_value = sess.run(
            [train_op, loss_op, global_step_op, learning_rate_op],
            feed_dict={handle_placeholder: train_handle})

        if step % train_loss_display_step == 0:
            logging.info('Step: {:d}, loss: {:.8f}, lr: {:.8f}'.format(
                global_step, loss, learning_rate_value))

        if step % valid_loss_display_step == 0:
            sess.run(valid_iterator.initializer)

            [valid_loss
             ] = sess.run([loss_op],
                          feed_dict={handle_placeholder: valid_handle})
            logging.info('Valid loss: {:.8f}'.format(valid_loss))

            saver.save(sess, model_param_path)
Пример #23
0
def train(sess, args):

    config_path = 'model_{}/config.json'.format(args.model_num)
    with open(config_path, 'r') as f:
        config = json.load(f)

    patch_size = config['patch_size']
    batch_size = config['batch_size']
    num_steps = config['num_steps']
    quan_scale = config['quan_scale']
    bitrate_reg_decay = config['bitrate_reg_decay']

    overload_log = args.overload_log
    load_ckpt = args.load_ckpt
    reset_step = args.reset_step
    max_step = args.max_step
    lr_and_bound = args.lr_and_bound

    if max_step != 'None':
        num_steps = int(max_step)

        print('num_steps: ', num_steps)

    if (reset_step == 'off') and (load_ckpt == 'on' or overload_log == 'off'):
        utils.set_logger(log_path)

        logging.info('Not overload_log')

    else:
        utils.set_logger(log_path, mode='w')

        logging.info('Overload_log')

    global global_var
    additional_param = args.additional_param
    if additional_param == '0':
        pass
    elif additional_param == '1':
        pass
    elif additional_param == '2':
        pass
    elif additional_param == '3':
        pass

    train_data_list = train_data_list_tpl.format(patch_size)
    valid_data_list = valid_data_list_tpl.format(patch_size)

    data_batch, handle_placeholder, train_handle, valid_handle, valid_iterator = data_loader.get_train_and_valid_data_batch(
        sess,
        train_data_list,
        valid_data_list,
        batch_size,
        flip_ud=False,
        flip_lr=False,
        rot_90=False)

    # print(sess.run(data_batch))
    # return

    # Avoid summary info
    logging.getLogger().setLevel(logging.WARNING)

    output = encoder(data_batch, patch_size, quan_scale)
    output = decoder(output, quan_scale)

    loss_op = get_loss(data_batch, output, bitrate_reg_decay)

    boundaries = config['boundaries']
    lr_values = config['lr_values']

    if lr_and_bound != 'None':
        start_lr = float(lr_and_bound.split(',')[0])
        bound = lr_and_bound.split(',')[1:]

        boundaries = [int(item) for item in boundaries]
        lr_values = [start_lr, start_lr / 10, start_lr / 100]

        print('boundaries: {}, lr_values: {}'.format(boundaries, lr_values))

    train_op, global_step_op, learning_rate_op = optimize(
        loss_op, boundaries, lr_values)

    saver = tf.train.Saver()
    if load_ckpt == 'on':
        saver.restore(sess, model_param_path)

        logging.info('Load previous params')
    else:
        variable_init = tf.global_variables_initializer()
        sess.run(variable_init)

    # saver.save(sess, model_param_path)
    # logging.info('Model paremeters saved to: {}'.format(model_param_path))
    # return

    utils.add_trainable_variables_to_summary()
    if args.summary_save == 'on':
        summary_writer = tf.summary.FileWriter(summary_path, sess.graph)
    merged_summaries = tf.summary.merge_all()

    options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE)
    run_metadata = tf.RunMetadata()
    many_runs_timeline = utils.TimeLiner()

    # Avoid summary info
    logging.getLogger().setLevel(logging.INFO)

    logging.info('-----')
    logging.info(args)
    logging.info(config)
    logging.info('-----')

    # debug mode
    if args.debug_mode == 'on':
        logging.info('-----')
        logging.info('Debug mode')
        logging.info('-----')

        return

    train_loss_display_step = 200
    valid_loss_display_step = 20000

    if reset_step == 'on':
        assign_op = tf.assign(global_step_op, 0)
        sess.run(assign_op)

    global_step = sess.run(global_step_op)

    # normal train
    for step in range(global_step + 1, num_steps + 1):
        if step % train_loss_display_step == 0:
            if args.summary_save == 'on':
                _, loss, global_step, learning_rate_value, summary_value = sess.run(
                    [
                        train_op, loss_op, global_step_op, learning_rate_op,
                        merged_summaries
                    ],
                    feed_dict={handle_placeholder: train_handle},
                    options=options,
                    run_metadata=run_metadata)
            else:
                _, loss, global_step, learning_rate_value = sess.run(
                    [train_op, loss_op, global_step_op, learning_rate_op],
                    feed_dict={handle_placeholder: train_handle},
                    options=options,
                    run_metadata=run_metadata)

            logging.info('Step: {:d}, loss: {:.8f}, lr: {:.8f}'.format(
                global_step, loss, learning_rate_value))

            if step % valid_loss_display_step == 0:
                sess.run(valid_iterator.initializer)

                [valid_loss
                 ] = sess.run([loss_op],
                              feed_dict={handle_placeholder: valid_handle},
                              options=options,
                              run_metadata=run_metadata)
                logging.info('Valid loss: {:.8f}'.format(valid_loss))

            if args.param_save == 'on':
                saver.save(sess, model_param_path)
                # logging.info('Model paremeters saved to: {}'.format(model_param_path))

            if args.summary_save == 'on':
                summary_writer.add_summary(summary_value,
                                           global_step=global_step)
                # logging.info('Summaries saved to: {}'.format(summary_path))

        else:
            _, loss, global_step = sess.run(
                [train_op, loss_op, global_step_op],
                feed_dict={handle_placeholder: train_handle},
                options=options,
                run_metadata=run_metadata)

        if args.timeline_save == 'on':
            many_runs_timeline.update_timeline(run_metadata.step_stats)

        # logging.info('{}_{}'.format(step, global_step))

    if args.timeline_save == 'on':
        many_runs_timeline.save(timeline_path)
        logging.info('Timeline saved to: {}'.format(timeline_path))
Пример #24
0
def main():
    parser = argparse.ArgumentParser()
    parser.add_argument('--params', help='Directory containing params.json')

    args = parser.parse_args()
    params = utils.Params(args.params)

    # pull out lr and decay for easy access
    learning_rate = params.learning_rate
    decay = params.decay

    #Set the random seed for reproducible experiments
    torch.manual_seed(230)

    experiment = Experiment(api_key=params.comet_api,
                            project_name=params.comet_name,
                            workspace="ayeaton")

    # Set the logger
    utils.set_logger(os.path.join(params.implementation_dir, 'train.log'))
    logging.info(experiment)

    log_params = {
        "learning_rate": learning_rate,
        "decay": decay,
        "batch_size": params.batch_size,
        "dropout_rate": params.dropout_rate,
        "model": params.model,
        "optimizer": params.optimizer,
        "loss_func": params.loss_func,
        "classes": params.classes,
        "metadata_file": params.metadata_file,
        "model_dir": params.model_dir,
        "implementation_dir": params.implementation_dir
    }
    experiment.log_parameters(log_params)

    # Create the input data pipeline
    logging.info("Loading the datasets...")

    # get data
    train_dataset = dataset(file_path=params.metadata_file,
                            split="Train",
                            classes=params.classes)

    train_loader = DataLoader(dataset=train_dataset,
                              batch_size=params.batch_size,
                              shuffle=True,
                              num_workers=8)

    val_dataset = dataset(file_path=params.metadata_file,
                          split="Val",
                          classes=params.classes)

    val_loader = DataLoader(dataset=val_dataset,
                            batch_size=params.batch_size,
                            shuffle=True,
                            num_workers=8)

    logging.info("- done.")

    # Define the model and optimizer
    if params.model != "Inception":
        net = importlib.import_module("models.{}".format(params.model))
        model = net.Net()
        inception = False
    else:
        model = models.inception_v3(pretrained=False)
        model.fc = nn.Linear(2048, len(params.classes))
        model.AuxLogits.fc = nn.Linear(768, 1)
        inception = True

    logging.info("Model -- {}".format(repr(model)))

    model.cuda()

    # fetch loss function and metrics
    metrics_save = metrics_code.metrics_save

    # Train the model
    logging.info("Starting training for {} epoch(s)".format(params.num_epochs))

    train_and_evaluate(model, train_loader, val_loader, metrics_save,
                       params.implementation_dir, params.num_epochs,
                       params.loss_func, params.optimizer, learning_rate,
                       decay, params.save_summary_steps, experiment, inception)
Пример #25
0
    args = parser.parse_args()
    json_path = os.path.join(args.model_dir, 'params.json')
    assert os.path.isfile(
        json_path), "No json configuration file found at {}".format(json_path)
    params = utils.Params(json_path)

    # use GPU if available
    params.cuda = torch.cuda.is_available()  # use GPU is available

    # Set the random seed for reproducible experiments
    torch.manual_seed(230)
    if params.cuda:
        torch.cuda.manual_seed(230)

    # Get the logger
    utils.set_logger(os.path.join(args.model_dir, 'evaluate.log'))

    # Create the input data pipeline
    logging.info("Creating the dataset...")

    # fetch dataloaders
    dataloaders = data_loader.fetch_data_loader(['val'], args.data_dir, params)
    test_dl = dataloaders['val']

    logging.info("getting the test dataloader - done.")

    # Define the model
    model = PhdGifNet().cuda() if params.cuda else PhdGifNet()

    loss_fn = loss_fn
    metrics = metrics
Пример #26
0
from train.network import Network
from utils.parser import parser
from utils.utils import Config, set_logger, prepare_paths

log = logging.getLogger('main')

if __name__ == '__main__':
    # Parsing arguments and set configs
    args = parser.parse_args()
    cfg = Config.init_from_parsed_args(args)

    # Set all the paths
    prepare_paths(cfg)

    # Logger
    set_logger(cfg)
    log = logging.getLogger('main')

    # Preprocessing & make dataset
    # if cfg.data_name = 'pos':
    #     vocab = process_main_corpus(cfg, 'split')
    #     vocab_pos = process_pos_corpus(cfg, 'split')
    #     corpus = CorpusPOSDataset(cfg.processed_train_path,
    #                               cfg.pos_data_path)

    if cfg.pos_tag:
        vocab, vocab_tag = process_corpus_tag(cfg)
        corpus_train = CorpusPOSDataset(cfg.processed_train_path,
                                        cfg.pos_data_path)
    else:
        vocab = process_main_corpus(cfg)
Пример #27
0
def run_check_net(train_dl, val_dl, multi_gpu=[0, 1]):
    set_logger(LOG_PATH)
    logging.info('\n\n')
    #---
    net = EfficientNet.from_name(
        MODEL, debug=debug)  #override_params={'num_classes': 1}
    net.load_state_dict(torch.load(glob.glob('../model/%s*' % MODEL)[0]))
    in_features = net._fc.in_features
    net._fc = nn.Linear(in_features, 4)  #num_classes=1
    net = net.cuda(device=device)
    print(glob.glob('../model/%s*' % MODEL)[0])
    print('====Loading pretrained weights done====')

    if FREEZE:
        print('====FREEZE parameters====')
        #freeze up to last layer for the first 5 epochs
        for k, v in net.named_parameters():
            #print(k)
            if k in ['_fc.weight', '_fc.bias']:
                v.requires_grad = True
                print('only train layer: ', k)
            else:
                v.requires_grad = False
    else:
        print('====not FREEZE parameters====')

    # dummy sgd to see if it can converge ...
    #optimizer = torch.optim.SGD(filter(lambda p: p.requires_grad, net.parameters()),
    #                  lr=LearningRate, momentum=0.9, weight_decay=0.0001)
    #optimizer = torch.optim.Adam(filter(lambda p: p.requires_grad, net.parameters()), lr=0.045)#LearningRate
    #scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='max',
    #                                                       factor=0.5, patience=4,#4 resnet34
    #                                                       verbose=False, threshold=0.0001,
    #                                                       threshold_mode='rel', cooldown=0,
    #                                                       min_lr=0, eps=1e-08)
    #scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size, gamma=0.9, last_epoch=-1)
    train_params = filter(lambda p: p.requires_grad, net.parameters())
    optimizer = torch.optim.SGD(train_params,
                                momentum=0.9,
                                weight_decay=0.0001,
                                lr=LearningRate)
    #scheduler = LR_Scheduler('poly', LearningRate, NUM_EPOCHS, len(train_dl))#lr_scheduler=['poly', 'step', 'cos']
    scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer,
                                                           T_max=NUM_EPOCHS,
                                                           eta_min=MIN_LR,
                                                           last_epoch=-1)

    if warm_start:
        logging.info('warm_start: ' + last_checkpoint_path)
        net, _ = load_checkpoint(last_checkpoint_path, net)

    # using multi GPU
    if multi_gpu is not None:
        net = nn.DataParallel(net, device_ids=multi_gpu)

    #use sync_batchnorm
    #net = convert_model(net)

    diff = 0
    best_val_metric = -0.1
    optimizer.zero_grad()

    #seed = get_seed()
    #seed = SEED
    #logging.info('aug seed: '+str(seed))
    #ia.imgaug.seed(seed)
    #np.random.seed(seed)

    for i_epoch in range(NUM_EPOCHS):
        scheduler.step(epoch=i_epoch)
        print('lr: %f' % scheduler.get_lr()[0])

        t0 = time.time()
        # iterate through trainset
        if multi_gpu is not None:
            net.module.set_mode('train')
        else:
            net.set_mode('train')
        train_loss_list = []
        #train_metric_list
        #logit_list, truth_list = [], []
        for i, (images, masks) in enumerate(train_dl):
            ## adjust learning rate
            #scheduler(optimizer, i, i_epoch, best_val_metric)

            input_data = images.to(device=device, dtype=torch.float)
            #1 for non-zero-mask
            truth = (torch.sum(masks.reshape(masks.size()[0],
                                             masks.size()[1], -1),
                               dim=2,
                               keepdim=False) != 0).to(device=device,
                                                       dtype=torch.float)
            logit = net(input_data)

            #logit_list.append(logit)
            #truth_list.append(truth)

            if multi_gpu is not None:
                _train_loss = net.module.criterion(logit, truth)
                #_train_metric = net.module.metric(logit, truth)#device='gpu'
            else:
                _train_loss = net.criterion(logit, truth)
                #_train_metric = net.metric(logit, truth)#device='gpu'
            train_loss_list.append(_train_loss.item())
            #train_metric_list.append(_train_metric.item())#.detach()

            #grandient accumulation step=2
            acc_step = 2
            _train_loss = _train_loss / acc_step
            _train_loss.backward()
            if (i + 1) % acc_step == 0:
                optimizer.step()
                optimizer.zero_grad()

        train_loss = np.mean(train_loss_list)
        #train_metric = np.mean(train_metric_list)
        #         if multi_gpu is not None:
        #             train_metric, train_tn, train_fp, train_fn, train_tp, train_auc, train_pos_percent = net.module.metric(torch.cat(logit_list, dim=0), torch.cat(truth_list, dim=0))
        #         else:
        #             train_metric, train_tn, train_fp, train_fn, train_tp, train_auc, train_pos_percent = net.metric(torch.cat(logit_list, dim=0), torch.cat(truth_list, dim=0))

        # compute valid loss & metrics (concatenate valid set in cpu, then compute loss, metrics on full valid set)
        net.module.set_mode('valid')
        with torch.no_grad():
            #             val_loss_list, val_metric_list = [], []
            #             for i, (image, masks) in enumerate(val_dl):
            #                 input_data = image.to(device=device, dtype=torch.float)
            #                 truth = masks.to(device=device, dtype=torch.float)
            #                 logit = net(input_data)

            #                 if multi_gpu is not None:
            #                     _val_loss  = net.module.criterion(logit, truth)
            #                     _val_metric  = net.module.metric(logit, truth)#device='gpu'
            #                 else:
            #                     _val_loss  = net.criterion(logit, truth)
            #                     _val_metric  = net.metric(logit, truth)#device='gpu'
            #                 val_loss_list.append(_val_loss.item())
            #                 val_metric_list.append(_val_metric.item())#.detach()

            #             val_loss = np.mean(val_loss_list)
            #             val_metric = np.mean(val_metric_list)

            logit_valid, truth_valid = None, None
            for j, (images, masks) in enumerate(val_dl):
                input_data = images.to(device=device, dtype=torch.float)
                #1 for non-zero-mask
                truth = (torch.sum(masks.reshape(masks.size()[0],
                                                 masks.size()[1], -1),
                                   dim=2,
                                   keepdim=False) != 0).to(device=device,
                                                           dtype=torch.float)
                logit = net(input_data)

                if logit_valid is None:
                    logit_valid = logit
                    truth_valid = truth
                else:
                    logit_valid = torch.cat((logit_valid, logit), dim=0)
                    truth_valid = torch.cat((truth_valid, truth), dim=0)
            if multi_gpu is not None:
                val_loss = net.module.criterion(logit_valid, truth_valid)
                _, val_metric, val_tn, val_fp, val_fn, val_tp, val_pos_percent = net.module.metric(
                    logit_valid, truth_valid)
            else:
                val_loss = net.criterion(logit_valid, truth_valid)
                _, val_metric, val_tn, val_fp, val_fn, val_tp, val_pos_percent = net.metric(
                    logit_valid, truth_valid)

        # Adjust learning_rate
        #scheduler.step(val_metric)
        #
        if i_epoch >= -1:  #30
            if val_metric > best_val_metric:
                best_val_metric = val_metric
                is_best = True
                diff = 0
            else:
                is_best = False
                diff += 1
                if diff > early_stopping_round:
                    logging.info(
                        'Early Stopping: val_metric does not increase %d rounds'
                        % early_stopping_round)
                    #print('Early Stopping: val_iou does not increase %d rounds'%early_stopping_round)
                    break
        else:
            is_best = False

        #save checkpoint
        checkpoint_dict = \
        {
            'epoch': i_epoch,
            'state_dict': net.module.state_dict() if multi_gpu is not None else net.state_dict(),
            'optim_dict' : optimizer.state_dict(),
            'metrics': {'train_loss': train_loss, 'val_loss': val_loss,
                        'val_metric': val_metric}
        }
        save_checkpoint(checkpoint_dict,
                        is_best=is_best,
                        checkpoint=checkpoint_path)

        #if i_epoch%20==0:
        if i_epoch > -1:
            logging.info(
                '[EPOCH %05d]train_loss: %0.5f; val_loss, val_metric: %0.5f, %0.5f'
                % (i_epoch, train_loss.item(), val_loss.item(), val_metric))
            logging.info('val_pos_percent: %.3f' % (val_pos_percent))
            logging.info('val (tn, fp, fn, tp): %d, %d, %d, %d' %
                         (val_tn, val_fp, val_fn, val_tp))
            logging.info('time elapsed: %0.1f min' % ((time.time() - t0) / 60))
Пример #28
0
def run_check_net(train_dl,
                  val_dl,
                  multi_gpu=[0, 1],
                  nonempty_only_loss=False):
    set_logger(LOG_PATH)
    logging.info('\n\n')
    #---
    enc, dec = MODEL.split('_')[0], MODEL.split('_')[1]
    net = SegmentationModule(net_enc=enc, net_dec=dec).cuda(device=device)

    #     for param in net.named_parameters():
    #         if param[0][:8] in ['decoder5']:#'decoder5', 'decoder4', 'decoder3', 'decoder2'
    #             param[1].requires_grad = False

    #     train_params = [{'params': net.get_1x_lr_params(), 'lr': LearningRate},
    #                     {'params': net.get_10x_lr_params(), 'lr': LearningRate * 10}]#for resnet backbone
    train_params = filter(lambda p: p.requires_grad, net.parameters())
    # dummy sgd to see if it can converge ...
    #optimizer = torch.optim.SGD(train_params,
    #                  lr=LearningRate, momentum=0.9, weight_decay=0.0001)
    #optimizer = torch.optim.Adam(filter(lambda p: p.requires_grad, net.parameters()), lr=0.045)#LearningRate
    #scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='max',
    #                                                       factor=0.5, patience=4,#4 resnet34
    #                                                       verbose=False, threshold=0.0001,
    #                                                       threshold_mode='rel', cooldown=0,
    #                                                       min_lr=0, eps=1e-08)
    #scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size, gamma=0.9, last_epoch=-1)

    #for deeplabv3plus customized
    optimizer = torch.optim.SGD(train_params,
                                momentum=0.9,
                                weight_decay=0.0001,
                                lr=LearningRate)
    scheduler = LR_Scheduler(
        'poly', LearningRate, NUM_EPOCHS,
        len(train_dl))  #lr_scheduler=['poly', 'step', 'cos']

    if warm_start:
        logging.info('warm_start: ' + last_checkpoint_path)
        net, _ = load_checkpoint(last_checkpoint_path, net)

    # using multi GPU
    if multi_gpu is not None:
        net = nn.DataParallel(net, device_ids=multi_gpu)

    #use sync_batchnorm
    #net = convert_model(net)

    diff = 0
    best_val_metric = -0.1
    optimizer.zero_grad()

    #seed = get_seed()
    #seed = SEED
    #logging.info('aug seed: '+str(seed))
    #ia.imgaug.seed(seed)
    #np.random.seed(seed)

    for i_epoch in range(NUM_EPOCHS):
        ### adjust learning rate
        #scheduler.step(epoch=i_epoch)
        #print('lr: %f'%scheduler.get_lr()[0])

        t0 = time.time()
        # iterate through trainset
        if multi_gpu is not None:
            net.module.set_mode('train')
        else:
            net.set_mode('train')
        train_loss_list, train_metric_list = [], []
        #for seed in [1]:#[1, SEED]:#augment raw data with a duplicate one (augmented)
        #seed = get_seed()
        #np.random.seed(seed)
        #ia.imgaug.seed(i//10)
        for i, (image, masks) in enumerate(train_dl):
            ## adjust learning rate
            scheduler(optimizer, i, i_epoch, best_val_metric)

            input_data = image.to(device=device, dtype=torch.float)
            truth = masks.to(device=device, dtype=torch.float)
            #set_trace()
            logit, logit_clf = net(input_data)  #[:, :3, :, :]

            if multi_gpu is not None:
                _train_loss = net.module.criterion(logit, truth,
                                                   nonempty_only_loss,
                                                   logit_clf)
                _train_metric = net.module.metric(logit, truth,
                                                  nonempty_only_loss,
                                                  logit_clf)  #device='gpu'
            else:
                _train_loss = net.criterion(logit, truth, nonempty_only_loss,
                                            logit_clf)
                _train_metric = net.metric(logit, truth, nonempty_only_loss,
                                           logit_clf)  #device='gpu'
            train_loss_list.append(_train_loss.item())
            train_metric_list.append(_train_metric.item())  #.detach()

            #grandient accumulation step=2
            acc_step = 1
            _train_loss = _train_loss / acc_step
            _train_loss.backward()
            if (i + 1) % acc_step == 0:
                optimizer.step()
                optimizer.zero_grad()

        train_loss = np.mean(train_loss_list)
        train_metric = np.mean(train_metric_list)

        # compute valid loss & metrics (concatenate valid set in cpu, then compute loss, metrics on full valid set)
        net.module.set_mode('valid')
        with torch.no_grad():
            val_loss_list, val_metric_list = [], []
            for i, (image, masks) in enumerate(val_dl):
                input_data = image.to(device=device, dtype=torch.float)
                truth = masks.to(device=device, dtype=torch.float)
                logit, logit_clf = net(input_data)

                if multi_gpu is not None:
                    _val_loss = net.module.criterion(logit, truth,
                                                     nonempty_only_loss,
                                                     logit_clf)
                    _val_metric = net.module.metric(logit, truth,
                                                    nonempty_only_loss,
                                                    logit_clf)  #device='gpu'
                else:
                    _val_loss = net.criterion(logit, truth, nonempty_only_loss,
                                              logit_clf)
                    _val_metric = net.metric(logit, truth, nonempty_only_loss,
                                             logit_clf)  #device='gpu'
                val_loss_list.append(_val_loss.item())
                val_metric_list.append(_val_metric.item())  #.detach()

            val_loss = np.mean(val_loss_list)
            val_metric = np.mean(val_metric_list)

#             logit_valid, truth_valid = None, None
#             for j, (image, masks) in enumerate(val_dl):
#                 input_data = image.to(device=device, dtype=torch.float)
#                 logit = net(input_data).cpu().float()
#                 truth = masks.cpu().float()
#                 if logit_valid is None:
#                     logit_valid = logit
#                     truth_valid = truth
#                 else:
#                     logit_valid = torch.cat((logit_valid, logit), dim=0)
#                     truth_valid = torch.cat((truth_valid, truth), dim=0)
#             if multi_gpu is not None:
#                 val_loss = net.module.criterion(logit_valid, truth_valid)
#                 val_metric = net.module.metric(logit_valid, truth_valid)
#             else:
#                 val_loss = net.criterion(logit_valid, truth_valid)
#                 val_metric = net.metric(logit_valid, truth_valid)

# Adjust learning_rate
#scheduler.step(val_metric)

#for 1024 trainging is harder, sometimes too early stop, force to at least train 40 epochs
        if i_epoch >= 10:  #-1
            if val_metric > best_val_metric:
                best_val_metric = val_metric
                is_best = True
                diff = 0
            else:
                is_best = False
                diff += 1
                if diff > early_stopping_round:
                    logging.info(
                        'Early Stopping: val_metric does not increase %d rounds'
                        % early_stopping_round)
                    #print('Early Stopping: val_iou does not increase %d rounds'%early_stopping_round)
                    break
        else:
            is_best = False

        #save checkpoint
        checkpoint_dict = \
        {
            'epoch': i,
            'state_dict': net.module.state_dict() if multi_gpu is not None else net.state_dict(),
            'optim_dict' : optimizer.state_dict(),
            'metrics': {'train_loss': train_loss, 'val_loss': val_loss,
                        'train_metric': train_metric, 'val_metric': val_metric}
        }
        save_checkpoint(checkpoint_dict,
                        is_best=is_best,
                        checkpoint=checkpoint_path)

        #if i_epoch%20==0:
        if i_epoch > -1:
            logging.info(
                '[EPOCH %05d]train_loss, train_metric: %0.5f, %0.5f; val_loss, val_metric: %0.5f, %0.5f; time elapsed: %0.1f min'
                % (i_epoch, train_loss.item(), train_metric.item(),
                   val_loss.item(), val_metric.item(),
                   (time.time() - t0) / 60))
                    help="save once after N epochs")
parser.add_argument('--end-epoch',
                    type=int,
                    default=20000,
                    help="maximum number of training epoch")
parser.add_argument('--random-seed',
                    type=int,
                    default=1,
                    help='random seed (default: 1)')

if not path.exists('models32'):
    os.mkdir('models32')

if __name__ == "__main__":
    args = parser.parse_args()
    set_logger(log_file=args.log_file, debug_mode=args.debug_mode)

    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

    torch.manual_seed(args.random_seed)

    train_loader = FeaturesLoader(features_path=args.features_path,
                                  annotation_path=args.annotation_path)
    """
    val_loader = FeaturesLoader(features_path=args.features_path,
                                annotation_path=args.annotation_path_test)
    """
    train_iter = torch.utils.data.DataLoader(train_loader,
                                             batch_size=args.batch_size,
                                             shuffle=True,
                                             num_workers=8,
Пример #30
0
        predict_label = combined_result(predict_label, pattern='average')
    else:
        dev_acc = metrics_result[0]
        dev_f1 = metrics_result[1]
    logger.info("dev evaluate average Acc: {}, F1:{}".format(dev_acc, dev_f1))
    file_name = '{}_{}_{:>.6f}.csv'.format(
        strftime("%m%d-%H%M%S", localtime()), config.language, dev_f1)
    predict_to_save(predict_label,
                    path=config.result_save_path,
                    file=file_name,
                    prob_threshold=config.prob_threshold)


if __name__ == '__main__':

    parser = argparse.ArgumentParser(description='Chinese NER Task')
    parser.add_argument('--config',
                        type=str,
                        required=True,
                        help='choose a config file')
    args = parser.parse_args()

    config_name = args.config
    import_config = import_module('configs.' + config_name)
    config = import_config.Config()

    random_seed(config.seed)
    set_logger(config.logging_dir, to_file=config.is_logging2file)

    Task(config)