metadata = a.all_metadata[6][2][2][2] im, joints_world, R, T, f, c = a.extract_info(metadata, 6, 2, 2, 2, 371) bbpx = bounding_box_pixel(joints_world, H36M_CONF.joints.root_idx, R, T, f, c) im, trans = a.crop_img(im, bbpx, None) im2 = im.copy() im2[:, :, 0] = im[:, :, 2] im2[:, :, 2] = im[:, :, 0] plt.axis('off') plt.imshow(im2) plt.title("ssksk") plt.show() #[6. 2. 1. 1. 101. 3.] #[6. 2. 2. 1. 1. 4.] #[6. 2. 2. 2. 371. 4.] fig = plt.figure() d.pose_3d(b['joints_im'], plot=True, fig=fig, azim=-90, elev=0) plt.show() from utils.utils_H36M.transformations import world_to_pixel, transform_2d_joints pix = [] for n, i in enumerate(b['mask_image']): plt.axis('off') plt.imshow(i[0], cmap='gray') plt.show() from utils.smpl_torch.pytorch.smpl_layer import SMPL_Layer from utils.smpl_torch.display_utils import Drawer from utils.trans_numpy_torch import numpy_to_tensor_float, tensor_to_numpy from utils.conversion_SMPL_h36m_torch import from_smpl_to_h36m_world_torch,project_vertices_onto_mask cuda = False
#plt.show() ####################################################################### #test cropping ####################################################################### from utils.utils_H36M.transformations import get_patch_image,transform_2d_joints from utils.utils_H36M.transformations import world_to_pixel,world_to_camera from utils.utils_H36M.transformations_torch import world_to_camera_batch, camera_to_pixels_batch, transform_2d_joints_batch b=Drawer() joints_world=sample_metadata['joint_world'][6].astype(np.float32) joint_cam=world_to_camera(joints_world, 17, sample_metadata['R'].astype(np.float32), sample_metadata['T'].astype(np.float32)) f=plt.figure() f=b.pose_3d(joint_cam, plot = True, fig = f, azim=-90, elev=-180) joints_world_torch = numpy_to_tensor_float(joints_world.reshape(1, 17, 3)) R_torch = numpy_to_tensor_float(sample_metadata['R'].astype(np.float32).reshape(1, 3, 3)) T_torch =numpy_to_tensor_float(sample_metadata['T'].astype(np.float32).reshape(1, 1, 3)) f_torch = numpy_to_tensor_float(sample_metadata['f'].astype(np.float32).reshape(1, 1, 2)) c_torch =numpy_to_tensor_float(sample_metadata['c'].astype(np.float32).reshape(1, 1, 2)) joints_cam_torch = world_to_camera_batch(joints_world_torch,17,R_torch,T_torch) joints_pix_torch = camera_to_pixels_batch(joints_cam_torch,17, f_torch, c_torch) joint_px=world_to_pixel( joints_world, H36M_CONF.joints.number, sample_metadata['R'], sample_metadata['T'], sample_metadata['f'],