def main(args): paddle.seed(12345) # load config config = load_yaml(args.config_yaml) config["yaml_path"] = args.config_yaml config["config_abs_dir"] = args.abs_dir # load static model class static_model_class = load_static_model_class(config) input_data = static_model_class.create_feeds() input_data_names = [data.name for data in input_data] fetch_vars = static_model_class.net(input_data) #infer_target_var = model.infer_target_var logger.info("cpu_num: {}".format(os.getenv("CPU_NUM"))) static_model_class.create_optimizer() use_gpu = config.get("runner.use_gpu", True) use_auc = config.get("runner.use_auc", False) auc_num = config.get("runner.auc_num", 1) train_data_dir = config.get("runner.train_data_dir", None) epochs = config.get("runner.epochs", None) print_interval = config.get("runner.print_interval", None) model_save_path = config.get("runner.model_save_path", "model_output") model_init_path = config.get("runner.model_init_path", None) batch_size = config.get("runner.train_batch_size", None) reader_type = config.get("runner.reader_type", "DataLoader") os.environ["CPU_NUM"] = str(config.get("runner.thread_num", 1)) logger.info("**************common.configs**********") logger.info( "use_gpu: {}, train_data_dir: {}, epochs: {}, print_interval: {}, model_save_path: {}" .format(use_gpu, train_data_dir, epochs, print_interval, model_save_path)) logger.info("**************common.configs**********") place = paddle.set_device('gpu' if use_gpu else 'cpu') exe = paddle.static.Executor(place) # initialize exe.run(paddle.static.default_startup_program()) last_epoch_id = config.get("last_epoch", -1) if reader_type == 'QueueDataset': dataset, file_list = get_reader(input_data, config) elif reader_type == 'DataLoader': train_dataloader = create_data_loader(config=config, place=place) for epoch_id in range(last_epoch_id + 1, epochs): epoch_begin = time.time() if use_auc: reset_auc(auc_num) if reader_type == 'DataLoader': fetch_batch_var = dataloader_train(epoch_id, train_dataloader, input_data_names, fetch_vars, exe, config) metric_str = "" for var_idx, var_name in enumerate(fetch_vars): metric_str += "{}: {}, ".format(var_name, fetch_batch_var[var_idx]) logger.info("epoch: {} done, ".format(epoch_id) + metric_str + "epoch time: {:.2f} s".format(time.time() - epoch_begin)) elif reader_type == 'QueueDataset': fetch_batch_var = dataset_train(epoch_id, dataset, fetch_vars, exe, config) logger.info("epoch: {} done, ".format(epoch_id) + "epoch time: {:.2f} s".format(time.time() - epoch_begin)) else: logger.info("reader type wrong") save_static_model(paddle.static.default_main_program(), model_save_path, epoch_id, prefix='rec_static')
def main(args): paddle.seed(12345) # load config config = load_yaml(args.config_yaml) config["yaml_path"] = args.config_yaml config["config_abs_dir"] = args.abs_dir # modify config from command if args.opt: for parameter in args.opt: parameter = parameter.strip() key, value = parameter.split("=") config[key] = value # load static model class static_model_class = load_static_model_class(config) input_data = static_model_class.create_feeds() input_data_names = [data.name for data in input_data] fetch_vars = static_model_class.net(input_data) #infer_target_var = model.infer_target_var logger.info("cpu_num: {}".format(os.getenv("CPU_NUM"))) static_model_class.create_optimizer() use_gpu = config.get("runner.use_gpu", True) use_auc = config.get("runner.use_auc", False) use_visual = config.get("runner.use_visual", False) use_inference = config.get("runner.use_inference", False) auc_num = config.get("runner.auc_num", 1) train_data_dir = config.get("runner.train_data_dir", None) epochs = config.get("runner.epochs", None) print_interval = config.get("runner.print_interval", None) model_save_path = config.get("runner.model_save_path", "model_output") model_init_path = config.get("runner.model_init_path", None) batch_size = config.get("runner.train_batch_size", None) reader_type = config.get("runner.reader_type", "DataLoader") os.environ["CPU_NUM"] = str(config.get("runner.thread_num", 1)) logger.info("**************common.configs**********") logger.info( "use_gpu: {}, use_visual: {}, train_batch_size: {}, train_data_dir: {}, epochs: {}, print_interval: {}, model_save_path: {}" .format(use_gpu, use_visual, batch_size, train_data_dir, epochs, print_interval, model_save_path)) logger.info("**************common.configs**********") place = paddle.set_device('gpu' if use_gpu else 'cpu') exe = paddle.static.Executor(place) # initialize exe.run(paddle.static.default_startup_program()) last_epoch_id = config.get("last_epoch", -1) # Create a log_visual object and store the data in the path if use_visual: from visualdl import LogWriter log_visual = LogWriter(args.abs_dir + "/visualDL_log/train") else: log_visual = None step_num = 0 if reader_type == 'QueueDataset': dataset, file_list = get_reader(input_data, config) elif reader_type == 'DataLoader': train_dataloader = create_data_loader(config=config, place=place) for epoch_id in range(last_epoch_id + 1, epochs): epoch_begin = time.time() if use_auc: reset_auc(auc_num) if reader_type == 'DataLoader': fetch_batch_var, step_num = dataloader_train( epoch_id, train_dataloader, input_data_names, fetch_vars, exe, config, use_visual, log_visual, step_num) metric_str = "" for var_idx, var_name in enumerate(fetch_vars): metric_str += "{}: {}, ".format(var_name, fetch_batch_var[var_idx]) logger.info("epoch: {} done, ".format(epoch_id) + metric_str + "epoch time: {:.2f} s".format(time.time() - epoch_begin)) elif reader_type == 'QueueDataset': fetch_batch_var = dataset_train(epoch_id, dataset, fetch_vars, exe, config) logger.info("epoch: {} done, ".format(epoch_id) + "epoch time: {:.2f} s".format(time.time() - epoch_begin)) else: logger.info("reader type wrong") save_static_model(paddle.static.default_main_program(), model_save_path, epoch_id, prefix='rec_static') if use_inference: feed_var_names = config.get("runner.save_inference_feed_varnames", []) feedvars = [] fetch_var_names = config.get( "runner.save_inference_fetch_varnames", []) fetchvars = [] for var_name in feed_var_names: if var_name not in paddle.static.default_main_program( ).global_block().vars: raise ValueError( "Feed variable: {} not in default_main_program, global block has follow vars: {}" .format( var_name, paddle.static.default_main_program().global_block( ).vars.keys())) else: feedvars.append(paddle.static.default_main_program(). global_block().vars[var_name]) for var_name in fetch_var_names: if var_name not in paddle.static.default_main_program( ).global_block().vars: raise ValueError( "Fetch variable: {} not in default_main_program, global block has follow vars: {}" .format( var_name, paddle.static.default_main_program().global_block( ).vars.keys())) else: fetchvars.append(paddle.static.default_main_program(). global_block().vars[var_name]) save_inference_model(model_save_path, epoch_id, feedvars, fetchvars, exe)
def main(args): paddle.seed(12345) # load config config = load_yaml(args.config_yaml) config["config_abs_dir"] = args.abs_dir # load static model class static_model_class = load_static_model_class(config) input_data = static_model_class.create_feeds(is_infer=True) input_data_names = [data.name for data in input_data] fetch_vars = static_model_class.infer_net(input_data) logger.info("cpu_num: {}".format(os.getenv("CPU_NUM"))) use_gpu = config.get("runner.use_gpu", True) use_auc = config.get("runner.use_auc", False) test_data_dir = config.get("runner.test_data_dir", None) print_interval = config.get("runner.print_interval", None) model_load_path = config.get("runner.infer_load_path", "model_output") start_epoch = config.get("runner.infer_start_epoch", 0) end_epoch = config.get("runner.infer_end_epoch", 10) batch_size = config.get("runner.infer_batch_size", None) os.environ["CPU_NUM"] = str(config.get("runner.thread_num", 1)) logger.info("**************common.configs**********") logger.info( "use_gpu: {}, test_data_dir: {}, start_epoch: {}, end_epoch: {}, print_interval: {}, model_load_path: {}" .format(use_gpu, test_data_dir, start_epoch, end_epoch, print_interval, model_load_path)) logger.info("**************common.configs**********") place = paddle.set_device('gpu' if use_gpu else 'cpu') exe = paddle.static.Executor(place) # initialize exe.run(paddle.static.default_startup_program()) test_dataloader = create_data_loader(config=config, place=place, mode="test") for epoch_id in range(start_epoch, end_epoch): logger.info("load model epoch {}".format(epoch_id)) model_path = os.path.join(model_load_path, str(epoch_id)) load_static_model(paddle.static.default_main_program(), model_path, prefix='rec_static') runner_results = [] epoch_begin = time.time() interval_begin = time.time() if use_auc: reset_auc() for batch_id, batch_data in enumerate(test_dataloader()): batch_runner_result = {} fetch_batch_var = exe.run( program=paddle.static.default_main_program(), feed=dict(zip(input_data_names, batch_data)), fetch_list=[var for _, var in fetch_vars.items()]) for var_idx, var_name in enumerate(fetch_vars): batch_runner_result[var_name] = np.array( fetch_batch_var[var_idx]).tolist() runner_results.append(batch_runner_result) if batch_id % print_interval == 0: metric_str = "" for var_idx, var_name in enumerate(fetch_vars): metric_str += "{}: {}, ".format( var_name, fetch_batch_var[var_idx][0]) logger.info( "epoch: {}, batch_id: {}, ".format(epoch_id, batch_id) + metric_str + "speed: {:.2f} ins/s".format(print_interval * batch_size / (time.time() - interval_begin))) interval_begin = time.time() reader_start = time.time() metric_str = "" for var_idx, var_name in enumerate(fetch_vars): metric_str += "{}: {}, ".format(var_name, fetch_batch_var[var_idx][0]) logger.info("epoch: {} done, ".format(epoch_id) + metric_str + "epoch time: {:.2f} s".format(time.time() - epoch_begin)) runner_result_save_path = config.get("runner.runner_result_dump_path", None) if runner_result_save_path: logging.info( "Dump runner result in {}".format(runner_result_save_path)) with open(runner_result_save_path, 'w+') as fout: json.dump(runner_results, fout)
def main(args): paddle.seed(12345) # load config config = load_yaml(args.config_yaml) config["config_abs_dir"] = args.abs_dir # load static model class static_model_class = load_static_model_class(config) input_data = static_model_class.create_feeds(is_infer=True) input_data_names = [data.name for data in input_data] fetch_vars = static_model_class.infer_net(input_data) logger.info("cpu_num: {}".format(os.getenv("CPU_NUM"))) use_gpu = config.get("runner.use_gpu", True) use_auc = config.get("runner.use_auc", False) use_visual = config.get("runner.use_visual", False) auc_num = config.get("runner.auc_num", 1) test_data_dir = config.get("runner.test_data_dir", None) print_interval = config.get("runner.print_interval", None) model_load_path = config.get("runner.infer_load_path", "model_output") start_epoch = config.get("runner.infer_start_epoch", 0) end_epoch = config.get("runner.infer_end_epoch", 10) batch_size = config.get("runner.infer_batch_size", None) os.environ["CPU_NUM"] = str(config.get("runner.thread_num", 1)) logger.info("**************common.configs**********") logger.info( "use_gpu: {}, use_visual: {}, test_data_dir: {}, start_epoch: {}, end_epoch: {}, print_interval: {}, model_load_path: {}". format(use_gpu, use_visual, test_data_dir, start_epoch, end_epoch, print_interval, model_load_path)) logger.info("**************common.configs**********") place = paddle.set_device('gpu' if use_gpu else 'cpu') exe = paddle.static.Executor(place) # initialize exe.run(paddle.static.default_startup_program()) test_dataloader = create_data_loader( config=config, place=place, mode="test") # Create a log_visual object and store the data in the path if use_visual: from visualdl import LogWriter log_visual = LogWriter(args.abs_dir + "/visualDL_log/infer") step_num = 0 for epoch_id in range(start_epoch, end_epoch): logger.info("load model epoch {}".format(epoch_id)) model_path = os.path.join(model_load_path, str(epoch_id)) load_static_model( paddle.static.default_main_program(), model_path, prefix='rec_static') epoch_begin = time.time() interval_begin = time.time() if use_auc: reset_auc(auc_num) for batch_id, batch_data in enumerate(test_dataloader()): fetch_batch_var = exe.run( program=paddle.static.default_main_program(), feed=dict(zip(input_data_names, batch_data)), fetch_list=[var for _, var in fetch_vars.items()]) if batch_id % print_interval == 0: metric_str = "" for var_idx, var_name in enumerate(fetch_vars): metric_str += "{}: {}, ".format( var_name, fetch_batch_var[var_idx][0]) if use_visual: log_visual.add_scalar( tag="infer/" + var_name, step=step_num, value=fetch_batch_var[var_idx][0]) logger.info("epoch: {}, batch_id: {}, ".format( epoch_id, batch_id) + metric_str + "speed: {:.2f} ins/s". format(print_interval * batch_size / (time.time( ) - interval_begin))) interval_begin = time.time() reader_start = time.time() step_num = step_num + 1 metric_str = "" for var_idx, var_name in enumerate(fetch_vars): metric_str += "{}: {}, ".format(var_name, fetch_batch_var[var_idx][0]) logger.info("epoch: {} done, ".format(epoch_id) + metric_str + "epoch time: {:.2f} s".format(time.time() - epoch_begin))
def main(args): paddle.seed(12345) # load config config = load_yaml(args.config_yaml) config["config_abs_dir"] = args.abs_dir # modify config from command if args.opt: for parameter in args.opt: parameter = parameter.strip() key, value = parameter.split("=") if type(config.get(key)) is int: value = int(value) if type(config.get(key)) is float: value = float(value) if type(config.get(key)) is bool: value = (True if value.lower() == "true" else False) config[key] = value # load static model class static_model_class = load_static_model_class(config) input_data = static_model_class.create_feeds(is_infer=True) input_data_names = [data.name for data in input_data] fetch_vars = static_model_class.infer_net(input_data) logger.info("cpu_num: {}".format(os.getenv("CPU_NUM"))) use_gpu = config.get("runner.use_gpu", True) use_xpu = config.get("runner.use_xpu", False) use_auc = config.get("runner.use_auc", False) use_visual = config.get("runner.use_visual", False) auc_num = config.get("runner.auc_num", 1) test_data_dir = config.get("runner.test_data_dir", None) print_interval = config.get("runner.print_interval", None) model_load_path = config.get("runner.infer_load_path", "model_output") start_epoch = config.get("runner.infer_start_epoch", 0) end_epoch = config.get("runner.infer_end_epoch", 10) batch_size = config.get("runner.infer_batch_size", None) use_save_data = config.get("runner.use_save_data", False) reader_type = config.get("runner.reader_type", "DataLoader") use_fleet = config.get("runner.use_fleet", False) os.environ["CPU_NUM"] = str(config.get("runner.thread_num", 1)) logger.info("**************common.configs**********") logger.info( "use_gpu: {}, use_xpu: {}, use_visual: {}, infer_batch_size: {}, test_data_dir: {}, start_epoch: {}, end_epoch: {}, print_interval: {}, model_load_path: {}" .format(use_gpu, use_xpu, use_visual, batch_size, test_data_dir, start_epoch, end_epoch, print_interval, model_load_path)) logger.info("**************common.configs**********") if use_xpu: xpu_device = 'xpu:{0}'.format(os.getenv('FLAGS_selected_xpus', 0)) place = paddle.set_device(xpu_device) else: place = paddle.set_device('gpu' if use_gpu else 'cpu') exe = paddle.static.Executor(place) # initialize exe.run(paddle.static.default_startup_program()) if reader_type == 'DataLoader': test_dataloader = create_data_loader(config=config, place=place, mode="test") elif reader_type == "CustomizeDataLoader": test_dataloader = static_model_class.create_data_loader() # Create a log_visual object and store the data in the path if use_visual: from visualdl import LogWriter log_visual = LogWriter(args.abs_dir + "/visualDL_log/infer") step_num = 0 for epoch_id in range(start_epoch, end_epoch): logger.info("load model epoch {}".format(epoch_id)) model_path = os.path.join(model_load_path, str(epoch_id)) load_static_model(paddle.static.default_main_program(), model_path, prefix='rec_static') epoch_begin = time.time() interval_begin = time.time() infer_reader_cost = 0.0 infer_run_cost = 0.0 reader_start = time.time() if use_auc: reset_auc(use_fleet, auc_num) #we will drop the last incomplete batch when dataset size is not divisible by the batch size assert any( test_dataloader() ), "test_dataloader's size is null, please ensure batch size < dataset size!" for batch_id, batch_data in enumerate(test_dataloader()): infer_reader_cost += time.time() - reader_start infer_start = time.time() fetch_batch_var = exe.run( program=paddle.static.default_main_program(), feed=dict(zip(input_data_names, batch_data)), fetch_list=[var for _, var in fetch_vars.items()]) infer_run_cost += time.time() - infer_start if batch_id % print_interval == 0: metric_str = "" for var_idx, var_name in enumerate(fetch_vars): metric_str += "{}: {}, ".format( var_name, fetch_batch_var[var_idx][0]) if use_visual: log_visual.add_scalar( tag="infer/" + var_name, step=step_num, value=fetch_batch_var[var_idx][0]) logger.info( "epoch: {}, batch_id: {}, ".format(epoch_id, batch_id) + metric_str + "avg_reader_cost: {:.5f} sec, avg_batch_cost: {:.5f} sec, avg_samples: {:.5f}, ips: {:.2f} ins/s" .format( infer_reader_cost / print_interval, (infer_reader_cost + infer_run_cost) / print_interval, batch_size, print_interval * batch_size / (time.time() - interval_begin))) interval_begin = time.time() infer_reader_cost = 0.0 infer_run_cost = 0.0 reader_start = time.time() step_num = step_num + 1 metric_str = "" for var_idx, var_name in enumerate(fetch_vars): metric_str += "{}: {}, ".format(var_name, fetch_batch_var[var_idx][0]) logger.info("epoch: {} done, ".format(epoch_id) + metric_str + "epoch time: {:.2f} s".format(time.time() - epoch_begin)) if use_save_data: save_data(fetch_batch_var, model_load_path)
def main(args): paddle.seed(12345) # load config config = load_yaml(args.config_yaml) config["config_abs_dir"] = args.abs_dir # load static model class static_model_class = load_static_model_class(config) input_data = static_model_class.create_feeds() input_data_names = [data.name for data in input_data] fetch_vars = static_model_class.net(input_data) #infer_target_var = model.infer_target_var logger.info("cpu_num: {}".format(os.getenv("CPU_NUM"))) static_model_class.create_optimizer() use_gpu = config.get("runner.use_gpu", True) use_auc = config.get("runner.use_auc", False) train_data_dir = config.get("runner.train_data_dir", None) epochs = config.get("runner.epochs", None) print_interval = config.get("runner.print_interval", None) model_save_path = config.get("runner.model_save_path", "model_output") model_init_path = config.get("runner.model_init_path", None) batch_size = config.get("runner.train_batch_size", None) os.environ["CPU_NUM"] = str(config.get("runner.thread_num", 1)) logger.info("**************common.configs**********") logger.info( "use_gpu: {}, train_data_dir: {}, epochs: {}, print_interval: {}, model_save_path: {}". format(use_gpu, train_data_dir, epochs, print_interval, model_save_path)) logger.info("**************common.configs**********") place = paddle.set_device('gpu' if use_gpu else 'cpu') exe = paddle.static.Executor(place) # initialize exe.run(paddle.static.default_startup_program()) last_epoch_id = config.get("last_epoch", -1) train_dataloader = create_data_loader(config=config, place=place) for epoch_id in range(last_epoch_id + 1, epochs): epoch_begin = time.time() interval_begin = time.time() train_reader_cost = 0.0 train_run_cost = 0.0 total_samples = 0 reader_start = time.time() if use_auc: reset_auc() for batch_id, batch_data in enumerate(train_dataloader()): train_reader_cost += time.time() - reader_start train_start = time.time() fetch_batch_var = exe.run( program=paddle.static.default_main_program(), feed=dict(zip(input_data_names, batch_data)), fetch_list=[var for _, var in fetch_vars.items()]) train_run_cost += time.time() - train_start total_samples += batch_size if batch_id % print_interval == 0: metric_str = "" for var_idx, var_name in enumerate(fetch_vars): metric_str += "{}: {}, ".format(var_name, fetch_batch_var[var_idx]) logger.info( "epoch: {}, batch_id: {}, ".format(epoch_id, batch_id) + metric_str + "avg_reader_cost: {:.5f} sec, avg_batch_cost: {:.5f} sec, avg_samples: {:.5f}, ips: {:.5f} images/sec". format(train_reader_cost / print_interval, ( train_reader_cost + train_run_cost) / print_interval, total_samples / print_interval, total_samples / ( train_reader_cost + train_run_cost))) train_reader_cost = 0.0 train_run_cost = 0.0 total_samples = 0 reader_start = time.time() metric_str = "" for var_idx, var_name in enumerate(fetch_vars): metric_str += "{}: {}, ".format(var_name, fetch_batch_var[var_idx]) logger.info("epoch: {} done, ".format(epoch_id) + metric_str + "epoch time: {:.2f} s".format(time.time() - epoch_begin)) save_static_model( paddle.static.default_main_program(), model_save_path, epoch_id, prefix='rec_static')