Пример #1
0
def main():
    global args
    args = parser.parse_args()
    print(args)

    if args.saveTest == 'True':
        args.saveTest = True
    elif args.saveTest == 'False':
        args.saveTest = False

    # Check if the save directory exists or not
    if not os.path.exists(args.save_dir):
        os.makedirs(args.save_dir)

    cudnn.benchmark = True

    data_transform = transforms.Compose([
        transforms.Resize((args.imageSize, args.imageSize),
                          interpolation=Image.NEAREST),
        transforms.ToTensor(),
    ])

    # Data Loading
    data_dir = '/home/salman/pytorch/segmentationNetworks/datasets/miccaiSegOrgans'
    # json path for class definitions
    json_path = '/home/salman/pytorch/segmentationNetworks/datasets/miccaiSegOrganClasses.json'

    image_dataset = miccaiSegDataset(os.path.join(data_dir, 'test'),
                                     data_transform, json_path)

    dataloader = torch.utils.data.DataLoader(image_dataset,
                                             batch_size=args.batchSize,
                                             shuffle=True,
                                             num_workers=args.workers)

    # Get the dictionary for the id and RGB value pairs for the dataset
    classes = image_dataset.classes
    key = utils.disentangleKey(classes)
    num_classes = len(key)

    # Initialize the model
    model = SegNet(args.bnMomentum, num_classes)

    # Load the saved model
    if os.path.isfile(args.model):
        print("=> loading checkpoint '{}'".format(args.model))
        checkpoint = torch.load(args.model)
        args.start_epoch = checkpoint['epoch']
        model.load_state_dict(checkpoint['state_dict'])
        print("=> loaded checkpoint (epoch {})".format(checkpoint['epoch']))
    else:
        print("=> no checkpoint found at '{}'".format(args.model))

    print(model)

    # Define loss function (criterion)
    criterion = nn.CrossEntropyLoss()

    if use_gpu:
        model.cuda()
        criterion.cuda()

    # Initialize an evaluation Object
    evaluator = utils.Evaluate(key, use_gpu)

    # Evaulate on validation/test set
    print('>>>>>>>>>>>>>>>>>>>>>>>Testing<<<<<<<<<<<<<<<<<<<<<<<')
    validate(dataloader, model, criterion, key, evaluator)

    # Calculate the metrics
    print('>>>>>>>>>>>>>>>>>> Evaluating the Metrics <<<<<<<<<<<<<<<<<')
    IoU = evaluator.getIoU()
    print('Mean IoU: {}, Class-wise IoU: {}'.format(torch.mean(IoU), IoU))
    PRF1 = evaluator.getPRF1()
    precision, recall, F1 = PRF1[0], PRF1[1], PRF1[2]
    print('Mean Precision: {}, Class-wise Precision: {}'.format(
        torch.mean(precision), precision))
    print('Mean Recall: {}, Class-wise Recall: {}'.format(
        torch.mean(recall), recall))
    print('Mean F1: {}, Class-wise F1: {}'.format(torch.mean(F1), F1))
Пример #2
0
def main():
    global args, best_prec1
    args = parser.parse_args()
    print(args)

    if args.saveTest == 'True':
        args.saveTest = True
    elif args.saveTest == 'False':
        args.saveTest = False

    # Check if the save directory exists or not
    if not os.path.exists(args.save_dir):
        os.makedirs(args.save_dir)

    cudnn.benchmark = True

    data_transforms = {
        'train': transforms.Compose([
            transforms.Resize((args.imageSize, args.imageSize), interpolation=Image.NEAREST),
            transforms.TenCrop(args.resizedImageSize),
            transforms.Lambda(lambda crops: torch.stack([transforms.ToTensor()(crop) for crop in crops])),
            #transforms.Lambda(lambda normalized: torch.stack([transforms.Normalize([0.295, 0.204, 0.197], [0.221, 0.188, 0.182])(crop) for crop in normalized]))
            #transforms.RandomResizedCrop(224, interpolation=Image.NEAREST),
            #transforms.RandomHorizontalFlip(),
            #transforms.RandomVerticalFlip(),
            #transforms.ToTensor(),
        ]),
        'test': transforms.Compose([
            transforms.Resize((args.imageSize, args.imageSize), interpolation=Image.NEAREST),
            transforms.ToTensor(),
            #transforms.Normalize([0.295, 0.204, 0.197], [0.221, 0.188, 0.182])
        ]),
    }

    # Data Loading
    data_dir = 'datasets/miccaiSegRefined'
    # json path for class definitions
    json_path = 'datasets/miccaiSegClasses.json'

    image_datasets = {x: miccaiSegDataset(os.path.join(data_dir, x), data_transforms[x],
                        json_path) for x in ['train', 'test']}

    dataloaders = {x: torch.utils.data.DataLoader(image_datasets[x],
                                                  batch_size=args.batchSize,
                                                  shuffle=True,
                                                  num_workers=args.workers)
                  for x in ['train', 'test']}
    dataset_sizes = {x: len(image_datasets[x]) for x in ['train', 'test']}

    # Get the dictionary for the id and RGB value pairs for the dataset
    classes = image_datasets['train'].classes
    key = utils.disentangleKey(classes)
    num_classes = len(key)

    # Initialize the model
    model = UNet(num_classes)

    # # Optionally resume from a checkpoint
    # if args.resume:
    #     if os.path.isfile(args.resume):
    #         print("=> loading checkpoint '{}'".format(args.resume))
    #         checkpoint = torch.load(args.resume)
    #         #args.start_epoch = checkpoint['epoch']
    #         pretrained_dict = checkpoint['state_dict']
    #         pretrained_dict = {k: v for k, v in pretrained_dict.items() if k in model.state_dict()}
    #         model.state_dict().update(pretrained_dict)
    #         model.load_state_dict(model.state_dict())
    #         print("=> loaded checkpoint (epoch {})".format(checkpoint['epoch']))
    #     else:
    #         print("=> no checkpoint found at '{}'".format(args.resume))
    #
    #     # # Freeze the encoder weights
    #     # for param in model.encoder.parameters():
    #     #     param.requires_grad = False
    #
    #     optimizer = optim.Adam(model.parameters(), lr = args.lr, weight_decay = args.wd)
    # else:
    optimizer = optim.Adam(model.parameters(), lr = args.lr, weight_decay = args.wd)

    # Load the saved model
    if os.path.isfile(args.resume):
        print("=> loading checkpoint '{}'".format(args.resume))
        checkpoint = torch.load(args.resume)
        args.start_epoch = checkpoint['epoch']
        model.load_state_dict(checkpoint['state_dict'])
        print("=> loaded checkpoint (epoch {})".format(checkpoint['epoch']))
    else:
        print("=> no checkpoint found at '{}'".format(args.resume))

    print(model)

    # Define loss function (criterion)
    criterion = nn.CrossEntropyLoss()

    # Use a learning rate scheduler
    scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=10, gamma=0.5)

    if use_gpu:
        model.cuda()
        criterion.cuda()

    # Initialize an evaluation Object
    evaluator = utils.Evaluate(key, use_gpu)

    for epoch in range(args.start_epoch, args.epochs):
        #adjust_learning_rate(optimizer, epoch)

        # Train for one epoch
        print('>>>>>>>>>>>>>>>>>>>>>>>Training<<<<<<<<<<<<<<<<<<<<<<<')
        train(dataloaders['train'], model, criterion, optimizer, scheduler, epoch, key)

        # Evaulate on validation set

        print('>>>>>>>>>>>>>>>>>>>>>>>Testing<<<<<<<<<<<<<<<<<<<<<<<')
        validate(dataloaders['test'], model, criterion, epoch, key, evaluator)

        # Calculate the metrics
        print('>>>>>>>>>>>>>>>>>> Evaluating the Metrics <<<<<<<<<<<<<<<<<')
        IoU = evaluator.getIoU()
        print('Mean IoU: {}, Class-wise IoU: {}'.format(torch.mean(IoU), IoU))
        PRF1 = evaluator.getPRF1()
        precision, recall, F1 = PRF1[0], PRF1[1], PRF1[2]
        print('Mean Precision: {}, Class-wise Precision: {}'.format(torch.mean(precision), precision))
        print('Mean Recall: {}, Class-wise Recall: {}'.format(torch.mean(recall), recall))
        print('Mean F1: {}, Class-wise F1: {}'.format(torch.mean(F1), F1))
        evaluator.reset()

        save_checkpoint({
            'epoch': epoch + 1,
            'state_dict': model.state_dict(),
            'optimizer': optimizer.state_dict(),
        }, filename=os.path.join(args.save_dir, 'checkpoint_{}.tar'.format(epoch)))
Пример #3
0
import os
import numpy as np
import tensorflow as tf
import utils
from preprocess import PreProcess
from topic_model import GraphAnchorLDA
from topic_gcn import StructuralTopicGCN

if __name__ == "__main__":
    params = utils.load_json_file("../config.json")

    preprocesser = PreProcess(params)
    preprocesser.generate_topic_concepts()

    graph_topic_model = GraphAnchorLDA(params)
    graph_topic_model.learn_topic_distribution()
    graph_topic_model.generate_topic_features()

    topic_gcn_model = StructuralTopicGCN(params)
    topic_gcn_model.train()

    # evaluate
    evaluator = utils.Evaluate(params)
    if params["dataset"] != "ppi":
        evaluator.ten_times_node_classification(flag_multi_label=False)
    else:
        # multi_label node classification
        evaluator.ten_times_node_classification(flag_multi_label=True)

    # evaluator.five_times_link_prediction()