def build_trainer(self, config, args): if not os.path.exists(args.model_save_path): _logger.warn("{} not exists, create it".format( args.model_save_path)) os.makedirs(args.model_save_path) _set_file(args.model_save_path + 'log.log') import torchvision.transforms as transforms CIFAR_MEAN = [0.49139968, 0.48215827, 0.44653124] CIFAR_STD = [0.24703233, 0.24348505, 0.26158768] train_transform = transforms.Compose([ transforms.RandomCrop(32, padding=4), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize(CIFAR_MEAN, CIFAR_STD), ]) train_data = dset.CIFAR10(root='/data/limingyao/.torch/datasets', train=True, download=False, transform=train_transform) num_train = len(train_data) indices = list(range(num_train)) split = int(np.floor(config.train_portion * num_train)) train_queue = torch.utils.data.DataLoader(train_data, batch_size=args.batch_size, sampler=SubsetRandomSampler( indices[:split]), pin_memory=True, num_workers=16) val_queue = torch.utils.data.DataLoader(train_data, batch_size=args.batch_size, sampler=SubsetRandomSampler( indices[split:]), pin_memory=True, num_workers=8) self.train_queue = train_queue self.val_queue = val_queue model = EDNet( num_classes=config.num_cls_used if config.num_cls_used > 0 else 10, width_mult=config.width_mult, kernel_size=config.kernel_size) self.trainer = Trainer(network=model, w_lr=config.w_lr, w_mom=config.w_mom, w_wd=config.w_wd, init_temperature=config.init_temperature, temperature_decay=config.temperature_decay, logger=_logger, lr_scheduler=lr_scheduler_params, target_lat=config.target_lat, gpus=args.gpus, model_save_path=args.model_save_path)
help='patch index, default is 0') parser.add_argument('--patch-size', type=int, default=1, help='patch size, default is 1') parser.add_argument('--gpus', type=str, default='0', help='gpus, default is 0') parser.add_argument('--load-model-path', type=str, default=None, help='re_train, default is None') args = parser.parse_args() args.model_save_path = '/data/limingyao/model/nas/snas/%s/' % \ (time.strftime('%Y-%m-%d', time.localtime(time.time()))) if not os.path.exists(args.model_save_path): _logger.warn("{} not exists, create it".format(args.model_save_path)) os.makedirs(args.model_save_path) _set_file(args.model_save_path + 'log.log') config = Config() train_transform, valid_transform = utils._data_transforms_cifar10(config) train_data = dset.CIFAR10(root="/data/limingyao/.torch/datasets",train=True, download=True, transform=train_transform) train_queue = torch.utils.data.DataLoader( train_data, batch_size=args.batch_size, shuffle=True, pin_memory=True, num_workers=16) model = SNAS(C=config.init_channels, num_classes=10, layers=config.stacked_cell) trainer = Trainer(network=model,