Пример #1
0
def run_MLP(params, trows, vrows):
    config = config_reader.read_config(utils.abs_path_of("config/default.ini"))

    if not os.path.isdir(config.get_rel_path("PATHS", "checkpoint_dir")):
        utils.mkdir_recursive(config.get_rel_path("PATHS", "checkpoint_dir"))

    iris_runner = mlp.FCNRunner(config,
                                params)  # trows, vrows, test_rows, config)

    iris_runner.bind_training_dataqueue_dataframe(trows, params)
    iris_runner.bind_validation_dataqueue_dataframe(vrows)

    if "TEST" in config:
        test_path = config.get_rel_path("TEST", "test_file")
        with tf.name_scope("test_data"):
            # TODO check this with Yanli
            # test_rows = csv_reader.read_test_csv_dataframe(test_path, int(config["TEST"]["batch_size"]))
            test_rows = csv_reader.read_csv_dataframe(test_path)
        iris_runner.bind_test_dataqueue_dataframe(test_rows)

    iris_runner.initialize()

    if "TRAINING" in config:
        valid_acc, train_loss, train_auc, valid_loss = iris_runner.run_training_dataframe(
            trows, vrows)

    if "TEST" in config:
        iris_runner.run_test(test_rows)

    iris_runner.close_session()

    return 1 - valid_acc, train_loss, train_auc, valid_loss
Пример #2
0
def objective(args):
    config = config_reader.read_config(utils.abs_path_of("config/default.ini"))
    params = {}

    params['l1_reg'] = args['l1_reg']
    params['l2_reg'] = args['l2_reg']
    params['num_layers'] = int(args['num_layers'])
    params['layer_size'] = int(args['layer_size'])
    params['learning_rate'] = args['learning_rate']
    params['batch_size'] = args['batch_size']
    params['dropout_keep_probability'] = args['dropout_keep_probability']
    params['validation_window'] = args['validation_window']

    trows = csv_reader.read_csv_dataframe(
        config.get_rel_path("PATHS", "training_file"))
    vrows = csv_reader.read_csv_dataframe(
        config.get_rel_path("PATHS", "validation_file"))

    with open(config.get_rel_path("PATHS", "training_file")) as f:
        temporary_reader = csv.reader(f, delimiter=',')
        total_columns = len(next(temporary_reader))

    params['total_columns'] = total_columns

    with tf.Graph().as_default():
        loss = run_MLP(params, trows, vrows)

    return loss
Пример #3
0
def optimize():

    config = config_reader.read_config(utils.abs_path_of("config/default.ini"))

    space = {
        'learning_rate':
        hyperopt.hp.choice('learning_rate', [0.0001, 0.001]),
        'rnn_num_layers':
        hyperopt.hp.choice('rnn_num_layers', [2, 3, 4]),
        'rnn_num_hidden':
        hyperopt.hp.choice('rnn_num_hidden', [200, 300, 400]),
        'rnn_batch_size':
        hyperopt.hp.choice('rnn_batch_size', [50, 100, 200]),
        'dropout_keep_probability':
        hyperopt.hp.choice('dropout_keep_probability', [0.5, 0.4, 0.6]),
        'validation_window':
        hyperopt.hp.choice('validation_window', [5])
    }

    best_model = hyperopt.fmin(objective,
                               space,
                               algo=hyperopt.tpe.suggest,
                               max_evals=200)

    print(best_model)
    print(hyperopt.space_eval(space, best_model))
Пример #4
0
    def get_rel_path(self, *args, **kwargs):
        raw_get = self.get(*args, **kwargs)
        if not raw_get:
            return ""
        if raw_get.startswith('/'):
            return raw_get

        return utils.abs_path_of(raw_get)
Пример #5
0
def main():
    global trows, vrows

    config = config_reader.read_config(utils.abs_path_of("config/default.ini"))

    trows = csv_reader.read_csv_dataframe(
        config.get_rel_path("PATHS", "training_file"))
    vrows = csv_reader.read_csv_dataframe(
        config.get_rel_path("PATHS", "validation_file"))

    while True:
        optimize()
Пример #6
0
def run_RNN(params, trainX, trainY, ValidX, ValidY):

    config = config_reader.read_config(utils.abs_path_of("config/default.ini"))
    training_iters = config.getint("RNN_SEQUENCE_CLASSIFICATION", "rnn_training_iters")
    validation_interval = config.getint("PROCESS", "validation_interval")
    #train_batchsize = config.getint("RNN_SEQUENCE_CLASSIFICATION", "rnn_batch_size")
    #keep_prob = config.getfloat("TRAINING", "dropout_keep_probability", fallback=1.0)
    train_batchsize = params['rnn_batch_size']
    keep_prob = params['dropout_keep_probability']
    validation_window = params['validation_window']

    train_len, rows, row_size = trainX.shape
    batches = batch_iter( zip(trainX, trainY), train_batchsize, training_iters)
    
    _, rows, row_size = trainX.shape
    num_classes = trainY.shape[1]

    with tf.name_scope('input'):
        data = tf.placeholder(tf.float32, [None, rows, row_size])
        target = tf.placeholder(tf.float32, [None, num_classes])
        dropout = tf.placeholder(tf.float32)

    model = SequenceClassification(data, target, dropout, params)
    sess = tf.Session()
    sess.run(tf.global_variables_initializer())

    for i,batch in enumerate(batches):
        batch_x, batch_y = zip(*batch)
      
        _, train_accuracy = sess.run([model.optimize, model.accuracy], {data: batch_x, target: batch_y, dropout: keep_prob})

        print('Batch {:2d} Train_accuracy {:3.1f}%'.format(i + 1, 100 * train_accuracy))
        val_loss = []
        v_count = 0
        if (i+1) % validation_interval == 0:
            accuracy, summary_test = sess.run([model.accuracy, model.summary_op_test], {data: ValidX, target: ValidY, dropout: 1})
            print("********************************************")
            print('Validation_accuracy {:3.1f}%'.format(100 * accuracy))
            print("********************************************")
            loss = -1*accuracy
            val_loss.append(loss)
            v_count += 1
            if v_count > validation_window:
                Validation_Loss = np.mean(val_loss[-validation_window:])
            else:
                Validation_Loss = np.mean(val_loss)
    return Validation_Loss
#if __name__ == '__main__':
    #main()
Пример #7
0
def main():
    global trows, vrows, total_columns

    config = config_reader.read_config(utils.abs_path_of("config/default.ini"))

    with open(config.get_rel_path("PATHS", "training_file")) as f:
        temporary_reader = csv.reader(f, delimiter=',')
        total_columns = len(next(temporary_reader))

    trows = csv_reader.read_csv_dataframe(
        config.get_rel_path("PATHS", "training_file"))
    vrows = csv_reader.read_csv_dataframe(
        config.get_rel_path("PATHS", "validation_file"))

    while True:
        optimize()
Пример #8
0
def run_MLP(params):

    config = config_reader.read_config(utils.abs_path_of("config/default.ini"))

    if not os.path.isdir(config.get_rel_path("PATHS", "checkpoint_dir")):
        utils.mkdir_recursive(config.get_rel_path("PATHS", "checkpoint_dir"))

    iris_runner = mlp.FCNRunner(config,
                                params)  # trows, vrows, test_rows, config)
    if "TRAINING" in config:
        with tf.name_scope("train_data"):
            #train_batch_size = config.getint("TRAINING", "batch_size")
            train_batch_size = params['batch_size']
            stratified_task = config.get("TRAINING",
                                         "stratified_sampling",
                                         fallback="")
            trows = csv_reader.read_csv(
                config.get_rel_path("PATHS", "training_file"),
                train_batch_size, stratified_task, config)

        with tf.name_scope("validation_data"):
            vrows = csv_reader.read_csv(
                config.get_rel_path("PATHS", "validation_file"),
                config.getint("TRAINING", "validation_batch_size"))

        iris_runner.bind_training_dataqueue(trows, params)
        iris_runner.bind_validation_dataqueue(vrows)
    '''
    if "TEST" in config:
        test_path = config.get_rel_path("TEST","test_file")
        with tf.name_scope("test_data"):
            test_rows = csv_reader.read_test_csv(test_path, int(config["TEST"]["batch_size"]))
        iris_runner.bind_test_dataqueue(test_rows)
    '''
    iris_runner.initialize()

    if "TRAINING" in config:
        valid_loss = iris_runner.run_training()
    #if "TEST" in config:
    #iris_runner.run_test()

    return valid_loss
Пример #9
0
def objective(args):
    config = config_reader.read_config(utils.abs_path_of("config/default.ini"))
    params = {}

    params['l1_reg'] = args['l1_reg']
    params['l2_reg'] = args['l2_reg']
    params['num_layers'] = args['num_layers']
    params['layer_size'] = args['layer_size']
    params['learning_rate'] = args['learning_rate']
    params['batch_size'] = args['batch_size']
    params['dropout_keep_probability'] = args['dropout_keep_probability']
    params['validation_window'] = args['validation_window']

    trows = csv_reader.read_csv_dataframe(
        config.get_rel_path("PATHS", "training_file"))
    vrows = csv_reader.read_csv_dataframe(
        config.get_rel_path("PATHS", "validation_file"))

    with tf.Graph().as_default():
        loss = run_MLP(params, trows, vrows)

    return loss
Пример #10
0
import os

import tensorflow as tf

import config_reader
import csv_reader
import mlp
import utils
import sys, os

config = config_reader.read_config(utils.abs_path_of("config/default.ini"))

if not os.path.isdir(config.get_rel_path("PATHS", "checkpoint_dir")):
    utils.mkdir_recursive(config.get_rel_path("PATHS", "checkpoint_dir"))

iris_runner = mlp.FCNRunner(config)  # trows, vrows, test_rows, config)
if "TRAINING" in config:
    with tf.name_scope("train_data"):
        train_batch_size = config.getint("TRAINING", "batch_size")
        stratified_task = config.get("TRAINING",
                                     "stratified_sampling",
                                     fallback="")
        trows = csv_reader.read_csv(
            config.get_rel_path("PATHS", "training_file"), train_batch_size,
            stratified_task, config)

    with tf.name_scope("validation_data"):
        vrows = csv_reader.read_csv(
            config.get_rel_path("PATHS", "validation_file"),
            config.getint("TRAINING", "validation_batch_size"))