Пример #1
0
 def test_uncorrelated_noscatter_error(self):
     data = sp.arange(10, dtype=float) + 1.0
     amp = 5.0
     theory = data/amp
     C = sp.diag((sp.arange(10, dtype=float) + 1.0)**2)
     a, s = utils.ampfit(data, C, theory)
     self.assertAlmostEqual(a, amp)
     self.assertAlmostEqual(s/a, 1.0/sp.sqrt(10))
Пример #2
0
 def test_uncorrelated_scatter_error(self):
     n = 1000
     data = sp.arange(n, dtype=float) + 1.0
     amp = 5.0
     theory = data/amp
     C = sp.diag((sp.arange(n, dtype=float) + 1.0)**2)
     data += random.normal(size=n)*data
     a, s = utils.ampfit(data, C, theory)
     self.assertTrue(sp.allclose(a, amp, rtol=5.0/sp.sqrt(n), atol=0))
     # Expect the next line to fail 1/100 trials.
     self.assertFalse(sp.allclose(a, amp, rtol=0.01/sp.sqrt(n), atol=0))
     self.assertAlmostEqual(s, amp/sp.sqrt(1000))
Пример #3
0
 def test_correlated_scatter(self) :
     n = 50
     r = (sp.arange(n, dtype=float) + 10.0*n)/10.0*n
     data = sp.sin(sp.arange(n)) * r 
     amp = 25.0
     theory = data/amp
     # Generate correlated matrix.
     C = random.rand(n, n) # [0, 1) 
     # Raise to high power to make values near 1 rare.
     C = (C**10) * 0.5
     C = (C + C.T)/2.0
     C += sp.identity(n)
     C *= r[:, None]/2.0
     C *= r[None, :]/2.0
     # Generate random numbers in diagonal frame.
     h, R = linalg.eigh(C)
     self.assertTrue(sp.alltrue(h>0))
     rand_vals = random.normal(size=n)*sp.sqrt(h)
     # Rotate back.
     data += sp.dot(R.T, rand_vals)
     a, s = utils.ampfit(data, C, theory)
     self.assertTrue(sp.allclose(a, amp, atol=5.0*s, rtol=0))
     # Expect the next line to fail 1/100 trials.
     self.assertFalse(sp.allclose(a, amp, atol=0.01*s, rtol=0))
Пример #4
0
 def test_uncorrelated_noscatter(self):
     data = sp.arange(10, dtype=float)
     theory = data/2.0
     C = sp.identity(10)
     a, s = utils.ampfit(data, C, theory)
     self.assertAlmostEqual(a, 2)