def dnn_detector(frame):
    gray_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)

    frame_height = frame.shape[0]
    frame_width = frame.shape[1]
    blob = cv2.dnn.blobFromImage(frame, 1.0, (300, 300), [104, 117, 123],
                                 False, False)

    net.setInput(blob)
    detections = net.forward()
    bboxes = []
    idx = 0
    offset = 15
    x_pos, y_pos = 10, 40

    for i in range(detections.shape[2]):
        confidence = detections[0, 0, i, 2]
        if confidence > conf_threshold:
            idx += 1
            x1 = int(detections[0, 0, i, 3] * frame_width)
            y1 = int(detections[0, 0, i, 4] * frame_height)
            x2 = int(detections[0, 0, i, 5] * frame_width)
            y2 = int(detections[0, 0, i, 6] * frame_height)
            bboxes.append([x1, y1, x2, y2])

            face = [x1, y1, x2 - x1, y2 - y1]

            if hist_eq:
                gray_frame = cv2.equalizeHist(gray_frame)

            model_in = get_model_compatible_input(gray_frame,
                                                  utils.bb_to_rect(face))
            predicted_proba = model.predict(model_in)
            predicted_label = np.argmax(predicted_proba[0])

            cv2.rectangle(frame, (x1, y1), (x2, y2), (255, 0, 0), 2)
            text = f"Person {idx}: {label2text[predicted_label]}"
            utils.draw_text_with_backgroud(frame,
                                           text,
                                           x1 + 5,
                                           y1,
                                           font_scale=0.4)

            text = f"Person {idx} :  "
            y_pos = y_pos + 2 * offset
            utils.draw_text_with_backgroud(frame,
                                           text,
                                           x_pos,
                                           y_pos,
                                           font_scale=0.3,
                                           box_coords_2=(2, -2))
            for k, v in label2text.items():
                text = f"{v}: {round(predicted_proba[0][k]*100, 3)}%"
                y_pos = y_pos + offset
                utils.draw_text_with_backgroud(frame,
                                               text,
                                               x_pos,
                                               y_pos,
                                               font_scale=0.3,
                                               box_coords_2=(2, -2))
def cascade_detector(frame_orig, detector):
    if not detector in ["haar", "lbp"]:
        raise ValueError("Invalid cascade detector")

    face_detector = (haar_detector if detector == "haar" else lbp_detector)

    frame = frame_orig.copy()
    gray_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)

    faces = face_detector.detectMultiScale(gray_frame, 1.32, 5)
    for face in faces:
        landmarks_coord = utils.get_landmarks(gray_frame,
                                              frame,
                                              utils.bb_to_rect(face),
                                              annotate=args["landmarks"])
        if args["delaunay_triangulation"]:
            utils.annotate_delaunay_triangulation(frame,
                                                  landmarks_coord,
                                                  line_thickness=2)
        if args["region_of_interest"]:
            utils.annotate_ROI(frame, landmarks_coord)
        if args["bounding_box"]:
            x, y, w, h = face
            cv2.rectangle(frame, (x, y), (x + w, y + h), (255, 0, 0), 2)
    return frame
Пример #3
0
def _raw_face_landmarks(face_image, face_locations=None):
    if face_locations is None:
        face_locations = _raw_face_locations(face_image)
    else:
        face_locations = [
            utils.bb_to_rect(face_location) for face_location in face_locations
        ]
    return [
        _post_predictor(face_image, face_location)
        for face_location in face_locations
    ]
Пример #4
0
def haar_detector(frame):
    gray_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
    face_frame = np.zeros(gray_frame.shape, dtype="uint8")

    offset = 15
    x_pos, y_pos = 10, 40

    faces = cascade_detector.detectMultiScale(gray_frame, 1.32, 5)
    for idx, face in enumerate(faces):
        if hist_eq:
            gray_frame = cv2.equalizeHist(gray_frame)

        img_arr = utils.align_face(gray_frame, utils.bb_to_rect(face),
                                   desiredLeftEye)
        face_frame = cv2.resize(img_arr, (48, 48),
                                interpolation=cv2.INTER_CUBIC)
        img_arr = utils.preprocess_img(img_arr, resize=False)

        predicted_proba = model.predict(img_arr)
        predicted_label = np.argmax(predicted_proba[0])

        x, y, w, h = face
        cv2.rectangle(frame, (x, y), (x + w, y + h), (255, 0, 0), 2)
        text = f"Person {idx+1}: {label2text[predicted_label]}"
        utils.draw_text_with_backgroud(frame, text, x + 5, y, font_scale=0.4)

        text = f"Person {idx+1} :  "
        y_pos = y_pos + 2 * offset
        utils.draw_text_with_backgroud(frame,
                                       text,
                                       x_pos,
                                       y_pos,
                                       font_scale=0.3,
                                       box_coords_2=(2, -2))
        for k, v in label2text.items():
            text = f"{v}: {round(predicted_proba[0][k]*100, 3)}%"
            y_pos = y_pos + offset
            utils.draw_text_with_backgroud(frame,
                                           text,
                                           x_pos,
                                           y_pos,
                                           font_scale=0.3,
                                           box_coords_2=(2, -2))
    return frame, face_frame
def dnn_detector(frame_orig):
    frame = frame_orig.copy()
    frame_height = frame.shape[0]
    frame_width = frame.shape[1]
    blob = cv2.dnn.blobFromImage(frame, 1.0, (300, 300), [104, 117, 123],
                                 False, False)

    net.setInput(blob)
    detections = net.forward()
    bboxes = []
    for i in range(detections.shape[2]):
        confidence = detections[0, 0, i, 2]
        if confidence > conf_threshold:
            x1 = int(detections[0, 0, i, 3] * frame_width)
            y1 = int(detections[0, 0, i, 4] * frame_height)
            x2 = int(detections[0, 0, i, 5] * frame_width)
            y2 = int(detections[0, 0, i, 6] * frame_height)
            bboxes.append([x1, y1, x2, y2])

            face = [x1, y1, x2 - x1, y2 - y1]

            gray_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)

            landmarks_coord = utils.get_landmarks(gray_frame,
                                                  frame,
                                                  utils.bb_to_rect(face),
                                                  annotate=args["landmarks"])
            if args["delaunay_triangulation"]:
                utils.annotate_delaunay_triangulation(frame,
                                                      landmarks_coord,
                                                      line_thickness=2)
            if args["region_of_interest"]:
                utils.annotate_ROI(frame, landmarks_coord)
            if args["bounding_box"]:
                cv2.rectangle(frame, (x1, y1), (x2, y2), (255, 0, 0), 2)
    return frame
Пример #6
0
def dnn_detector(frame):
    frame_height = frame.shape[0]
    frame_width = frame.shape[1]
    blob = cv2.dnn.blobFromImage(frame, 1.0, (300, 300), [104, 117, 123],
                                 False, False)

    net.setInput(blob)
    detections = net.forward()
    bboxes = []
    idx = 0
    offset = 15
    x_pos, y_pos = 10, 40

    gray_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
    face_frame = np.zeros(gray_frame.shape, dtype="uint8")

    for i in range(detections.shape[2]):
        confidence = detections[0, 0, i, 2]
        if confidence > conf_threshold:
            idx += 1
            x1 = int(detections[0, 0, i, 3] * frame_width)
            y1 = int(detections[0, 0, i, 4] * frame_height)
            x2 = int(detections[0, 0, i, 5] * frame_width)
            y2 = int(detections[0, 0, i, 6] * frame_height)
            bboxes.append([x1, y1, x2, y2])

            face = [x1, y1, x2 - x1, y2 - y1]

            if hist_eq:
                gray_frame = cv2.equalizeHist(gray_frame)

            img_arr = utils.align_face(gray_frame, utils.bb_to_rect(face),
                                       desiredLeftEye)
            face_frame = cv2.resize(img_arr, (48, 48),
                                    interpolation=cv2.INTER_CUBIC)
            img_arr = utils.preprocess_img(img_arr, resize=False)

            predicted_proba = model.predict(img_arr)
            predicted_label = np.argmax(predicted_proba[0])

            cv2.rectangle(frame, (x1, y1), (x2, y2), (255, 0, 0), 2)
            text = f"Person {idx}: {label2text[predicted_label]}"
            utils.draw_text_with_backgroud(frame,
                                           text,
                                           x1 + 5,
                                           y1,
                                           font_scale=0.4)

            text = f"Person {idx} :  "
            y_pos = y_pos + 2 * offset
            utils.draw_text_with_backgroud(frame,
                                           text,
                                           x_pos,
                                           y_pos,
                                           font_scale=0.3,
                                           box_coords_2=(2, -2))
            for k, v in label2text.items():
                text = f"{v}: {round(predicted_proba[0][k]*100, 3)}%"
                y_pos = y_pos + offset
                utils.draw_text_with_backgroud(frame,
                                               text,
                                               x_pos,
                                               y_pos,
                                               font_scale=0.3,
                                               box_coords_2=(2, -2))
    return frame, face_frame
Пример #7
0
    utils.imshow_scaled("Images", imref)
    console.print(Rule())
    console.print(
        "Press ENTER to validate, else press any other key to start again.",
        style="yellow bold blink")
    key = cv.waitKey(0)
    if key == 13:  # if ENTER is pressed, exit loop
        break

# Initial length and clamp ROI center
l0 = utils.compute_length(ROI1, ROI2)
center0 = utils.ROIcenter(ROIcorner)

# Init trackers
tracker1 = dlib.correlation_tracker()
tracker1.start_track(imrefbw, utils.bb_to_rect(ROI1))
tracker2 = dlib.correlation_tracker()
tracker2.start_track(imrefbw, utils.bb_to_rect(ROI2))
tracker3 = dlib.correlation_tracker()
tracker3.start_track(imrefbw, utils.bb_to_rect(ROIcorner))

# Init strain and displacement plot
plt.ion()
fig, ax1 = plt.subplots()
frames = []
strain = []
disp = []
line1, = ax1.plot(frames, strain, "ro")
ax1.set_xlabel("Image")
ax1.set_ylabel("Strain [%]", color="red")
ax1.tick_params(axis="y", labelcolor="red")