Пример #1
0
    def test_full2(self):
        initial_sigmas = np.array([10, 12, 12, 12, 14], dtype=np.int32)
        alpha = utils.borda(5) * 2  # kind-of-Borda
        weights = np.array([2, 2])
        m = len(initial_sigmas)

        assert isinstance(initial_sigmas, np.ndarray)
        gaps = utils.sigmas_to_gaps(initial_sigmas, np.max(initial_sigmas))
        logger.info('gaps={}'.format(gaps))

        init_gaps = gaps
        t1 = current_milli_time()
        fractional_makespan, clp_res = clp_R_alpha_WCM.find_strategy(
            initial_sigmas, alpha, weights, mode='per_cand')
        t2 = current_milli_time()

        logger.warning('Took time {}ms, fractional_makespan={}'.format(
            t2 - t1, fractional_makespan))

        # fractional_makespan = utils.weighted_makespan(frac_res, alpha, weights, initial_sigmas)
        clp_makespan = utils.weighted_makespan(clp_res, alpha, weights,
                                               initial_sigmas)

        logger.info('weights={} m={}frac={} CLP={}'.format(
            weights, m, fractional_makespan, clp_makespan))
        self.assertLessEqual(fractional_makespan, clp_makespan)
def find_strategy(initial_sigmas, alpha, weights):
    if len(initial_sigmas) != len(alpha):
        raise ValueError(len(initial_sigmas) != len(alpha))

    m = len(initial_sigmas)
    k = len(weights)

    # order voter according to weights, non-increasing
    ordered_voters = sorted(np.arange(k),
                            key=lambda v: weights[v],
                            reverse=True)

    current_awarded = initial_sigmas.copy()

    config_mat = np.zeros((m, k), dtype=int)

    for ell in ordered_voters:

        # now sort the candidates according to the current awarded score, high to low:
        candidates_sorted = sorted(utils.borda(m),
                                   key=lambda i: current_awarded[i],
                                   reverse=True)
        # now achieve inverse-sort: every candidate gets his rank (high-to-low) in sort
        ballot = np.zeros(m, dtype=int)
        for rank, cand in enumerate(candidates_sorted):
            ballot[cand] = rank

        config_mat[:, ell] = ballot
        current_awarded += weights[ell] * alpha[ballot]

    return config_mat
Пример #3
0
    def test_calculate_awarded(self):
        m = 3
        config_mat = np.array([[0, 1], [2, 1], [2, 0]])
        initil_sigmas = np.array([10, 11, 12])
        weights = np.array([1, 2])
        alpha = utils.borda(m)  # borda
        awarded = utils.weighted_calculate_awarded(config_mat, alpha, weights,
                                                   initil_sigmas)

        self.assertEquals(awarded.tolist(), [12, 15, 14])
    def test_find_strategy(self):
        initial_sigmas = np.array([5, 6, 6, 6, 7], dtype=np.int32)
        weights = np.array([1, 1])
        k = len(weights)
        m = len(initial_sigmas)

        alpha = utils.borda(m)

        res = reverse_algorithm.find_strategy(initial_sigmas, alpha, weights)

        self.assertListEqual(np.ravel(res).tolist(), [4, 0, 1, 3, 2, 2, 3, 1, 0, 4])
Пример #5
0
    def test_lp_solve(self):
        initial_sigmas = np.array([4, 6, 6, 8], dtype=np.int32)
        alpha = utils.borda(4)  # Borda
        weights = np.array([2, 2])
        m = len(initial_sigmas)
        target = 12
        result = clp_R_alpha_WCM.lp_solve(m, alpha, weights, initial_sigmas,
                                          target)

        tol = 0.001
        makespan = utils.weighted_fractional_makespan(initial_sigmas, result,
                                                      alpha, weights)
        self.assertLessEqual(makespan, target + tol)
Пример #6
0
    def test_fix_rounding_result_weighted(self):
        k = 2
        m = 3

        config_mat = np.array([[0, 1], [2, 2], [2, 0]])

        initial_sigmas = np.array([0, 1, 1])
        weights = np.array([1, 1])
        alpha = utils.borda(m)  # borda

        res_config_mat = clp_R_alpha_WCM.fix_rounding_result_weighted(
            config_mat, alpha, weights, initial_sigmas)

        self.assertListEqual(
            np.ravel(res_config_mat).tolist(), [0, 1, 1, 2, 2, 0])
 def experiments():
     for m in range(10, 110, 10):
         for k in [10]:
             for trial in range(trials):
                 n = k * 2
                 ceil_log_n = int(np.ceil(np.log(n)))
                 yield delayed(run)(
                     n, utils.borda(m),
                     utils.draw_zipf_weights(owners=k,
                                             W=k * ceil_log_n), m, trial,
                     utils.draw_uniform_weighted(
                         m, k * 2,
                         utils.draw_zipf_weights(owners=n,
                                                 W=n * ceil_log_n,
                                                 return_len_k=True)))
    def test_full(self):
        initial_sigmas = np.array([5, 6, 6, 6, 7], dtype=np.int32)
        k = 2
        m = len(initial_sigmas)

        alpha = utils.borda(m)  # borda

        assert isinstance(initial_sigmas, np.ndarray)
        gaps = utils.sigmas_to_gaps(initial_sigmas, np.max(initial_sigmas))
        logger.info('gaps={}'.format(gaps))

        init_gaps = gaps
        t1 = current_milli_time()
        fractional_makespan, clp_res = clp_R_alpha_UCM.find_strategy(
            initial_sigmas, alpha, k, mode='per_cand')
        t2 = current_milli_time()

        logger.warning('Took time {}ms, fractional_makespan={}'.format(
            t2 - t1, fractional_makespan))

        # fractional_makespan = utils.makespan(initial_sigmas, frac_res, alpha=alpha)
        clp_makespan = utils.makespan(initial_sigmas, clp_res, alpha=alpha)
        gaps = utils.sigmas_to_gaps(initial_sigmas, clp_makespan)
        af_res = average_fit.solve_one_gaps(k, gaps, verbose=False)
        af_makespan = utils.makespan(initial_sigmas, af_res, alpha=alpha)
        logger.info('k={} m={} frac={} CLP={} AF={}'.format(
            k, m, fractional_makespan, clp_makespan, af_makespan))

        # self.assertListEqual(clp_res.tolist(),
        #                      [[0, 0, 1, 1, 0],
        #                       [0, 1, 0, 1, 0],
        #                       [1, 0, 0, 0, 1],
        #                       [1, 0, 0, 0, 1],
        #                       [0, 1, 1, 0, 0]]
        #                      )
        self.assertAlmostEqual(fractional_makespan, 10.0, delta=1e-3)
        self.assertEquals(clp_makespan, 10)
        self.assertEquals(af_makespan, 12)
Пример #9
0
def solve_one_gaps(k, init_gaps, verbose=False):
    m = len(init_gaps)

    score2mult = np.array([k] * m)

    init_gaps = np.array(init_gaps, dtype=float)

    gaps = init_gaps.copy()

    left = np.array([k] * m)
    potential = gaps / left

    num_scores = m * k
    config_mat = np.zeros((m, m), dtype=int)

    if verbose:
        strs = [
            '{}/{}={}'.format(g, l, p)
            for g, l, p in zip(gaps, left, potential)
        ]
        print('\t\t'.join(strs))

    while num_scores > 0:
        # choose cand with highest potential
        cand = np.argmax(potential)

        # choose which score to give
        does_fit = utils.borda(m) <= gaps[cand]
        still_left = score2mult > 0
        does_fit_and_still_left = np.logical_and(does_fit, still_left)
        score_to_give = None
        if np.any(does_fit_and_still_left):
            score_to_give = does_fit_and_still_left.nonzero()[0][-1]
        else:
            score_to_give = still_left.nonzero()[0][-1]

        # does_fit = np.array([ j <= gaps[cand] for j in range(m)])
        # still_left = np.array([score2mult[j] > 0 for j in range(m)])

        # if we have still score of this type to give, and it doesn't cause the candidate to overflow
        score2mult[score_to_give] -= 1
        config_mat[cand, score_to_give] += 1
        gaps[cand] -= score_to_give
        left[cand] -= 1

        # re-calculate potential
        if left[cand] > 0:
            potential[cand] = gaps[cand] / left[cand]
        else:
            potential[cand] = -1

        num_scores -= 1

        if verbose:
            strs = [
                '{}/{}={}'.format(g, l, p)
                for g, l, p in zip(gaps, left, potential)
            ]
            strs[cand] = utils.bcolors.OKBLUE + str(
                score_to_give
            ) + '->' + utils.bcolors.WARNING + strs[cand] + utils.bcolors.ENDC
            print('\t\t'.join(strs))
    logging.debug('final configs:')
    logging.debug(config_mat)

    return config_mat