Пример #1
0
def position(n=default_n):
    r"""Position operator.

    Returns the n-dimensional approximation of the
    dimensionless position operator Q in the number basis.

    .. math::

       Q &= \sqrt{\frac{m \omega}{\hbar}}   q =    (a+a^\dagger) / \sqrt{2},\\
       P &= \sqrt{\frac{1}{m \hbar \omega}} p = -i (a-a^\dagger) / \sqrt{2}.

    (Equivalently, :math:`a = (Q + iP) / \sqrt{2}`).
    These operators fulfill :math:`[q, p] = i \hbar, \quad  [Q, P] = i`.
    The Hamiltonian of the harmonic oscillator is

    .. math::

       H = \frac{p^2}{2m} +\frac{1}{2} m \omega^2 q^2
         = \frac{1}{2} \hbar \omega (P^2 +Q^2)
         = \hbar \omega (a^\dagger a +\frac{1}{2}).
    """
    # Ville Bergholm 2010

    a = mat(boson_ladder(n))
    return array(a + a.H) / sqrt(2)
Пример #2
0
def test():
    """Testing script for the harmonic oscillator module."""
    from numpy.random import randn
    from utils import assert_o

    def randc():
        """Random complex number."""
        return randn() + 1j*randn()

    a = mat(boson_ladder(default_n))

    alpha = randc()
    s = coherent_state(alpha)
    s0 = state(0, default_n)
    D = displace(alpha)
    
    assert_o((s - s0.u_propagate(D)).norm(), 0, tol)  # displacement

    z = randc()
    S = squeeze(z)

    Q = position(); P = momentum()
    q = randn(); p = randn()
    sq = position_state(q)
    sp = momentum_state(p)

    temp = 1e-1 # the truncation accuracy is not amazing here
    assert_o(sq.ev(Q), q, temp)  # Q, P eigenstates
    assert_o(sp.ev(P), p, temp)

    temp = ones(default_n);  temp[-1] = -default_n+1 # truncation...
    assert_o(norm(comm(Q,P) - 1j * diag(temp)), 0, tol) # [Q, P] = i

    assert_o(norm(mat(P)**2 +mat(Q)**2 - 2 * a.H * a -diag(temp)), 0, tol)  # P^2 +Q^2 = 2a^\dagger * a + 1
Пример #3
0
def displace(alpha, n=default_n):
    r"""Bosonic displacement operator.

    Returns the n-dimensional approximation for the bosonic
    displacement operator

    .. math::

       D(\alpha) := \exp\left(\alpha a^\dagger - \alpha^* a\right)
       = \exp\left( i \sqrt{2} \left(Q \mathrm{Im}(\alpha) -P \mathrm{Re}(\alpha)\right)\right)

    in the number basis. This yields

    .. math::

       D(\alpha) Q D^\dagger(\alpha) &= Q -\sqrt{2} \textrm{Re}(\alpha) \mathbb{I},\\
       D(\alpha) P D^\dagger(\alpha) &= P -\sqrt{2} \textrm{Im}(\alpha) \mathbb{I},

    and thus the displacement operator displaces the state of a harmonic oscillator in phase space.
    """
    # Ville Bergholm 2010

    if not isscalar(alpha):
        raise TypeError('alpha must be a scalar.')

    a = mat(boson_ladder(n))
    return array(expm(alpha * a.H -alpha.conjugate() * a))
Пример #4
0
def momentum(n=default_n):
    """Momentum operator.

    Returns the n-dimensional approximation of the
    dimensionless momentum operator P in the number basis.

    See :func:`position`.
    """
    # Ville Bergholm 2010

    a = mat(boson_ladder(n))
    return -1j*array(a - a.H) / sqrt(2)
Пример #5
0
def squeeze(z, n=default_n):
    r"""Bosonic squeezing operator.

    Returns the n-dimensional approximation for the bosonic
    squeezing operator

    .. math::

       S(z) := \exp\left(\frac{1}{2} (z^* a^2 - z a^{\dagger 2})\right)
       = \exp\left(\frac{i}{2} \left((QP+PQ)\mathrm{Re}(z) +(P^2-Q^2)\mathrm{Im}(z)\right)\right)

    in the number basis.
    """
    # Ville Bergholm 2010
    if not isscalar(z):
        raise TypeError('z must be a scalar.')

    a = mat(boson_ladder(n))
    return array(expm(0.5 * (z.conjugate() * (a ** 2) - z * (a.H ** 2))))