Пример #1
0
def validate_instance_type_flag():
    # Validate the value:
    instance_tuple = _FLAG_INSTANCE_TYPE.value.strip().split("-")
    utils.check_equal(len(instance_tuple), 3)
    utils.check_contained(instance_tuple[0], {"n1", "n2"})

    utils.check_contained(instance_tuple[1], {"standard", "highmem"})
    num_cpus = int(instance_tuple[2])
    utils.check_operator(operator.le, num_cpus, 64)
    utils.check_operator(operator.ge, num_cpus, 0)
Пример #2
0
    def __init__(self, instance_output_dir: str,
                 checkpoint: tf.train.Checkpoint):
        utils.check_not_none(instance_output_dir)
        utils.check_operator(operator.gt, len(instance_output_dir), 0)
        instance_output_dir = str(instance_output_dir)

        self._instance_output_dir = (
            instance_output_dir +
            ("/" if not instance_output_dir.endswith("/") else ""))
        self._checkpoint = checkpoint
        self._checkpoint_manager = tf.train.CheckpointManager(
            checkpoint=checkpoint,
            directory=self._instance_output_dir,
            max_to_keep=None,
        )

        # self._tmp_dir = tempfile.TemporaryDirectory()
        self._pool = concurrent.futures.ThreadPoolExecutor(1)
        self._futures = []
Пример #3
0
def main(argv):
    if len(argv) > 1:
        raise RuntimeError(argv[1:])
    absl_logging.use_python_logging()
    utils.check_contained(_FLAG_APPROACH_TYPE.value, _ACCEPTABLE_APPROACHES)

    utils.check_operator(operator.xor, bool(_FLAG_H5_MODEL_PATH.value),
                         bool(_FLAG_CKPT_MODEL_PATH.value))

    if _FLAG_H5_MODEL_PATH.value:
        model_path = _FLAG_H5_MODEL_PATH.value
        mode = constants.SaveModeChoices.hfh5
    elif _FLAG_CKPT_MODEL_PATH.value:
        model_path = _FLAG_CKPT_MODEL_PATH.value
        mode = constants.SaveModeChoices.ckpt
    else:
        raise RuntimeError("Logically should never happen.")

    utils.check_exists(model_path)
    device_type = tf_utils.devices_to_use()[0].device_type

    # ONLY GPU IS SUPPORTED
    utils.check_equal(device_type, "GPU")

    #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
    # Build the distribution strategy
    #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
    if device_type == "TPU":
        # ONLY LOCAL TPU IS "SUPPORTED"
        utils.check_isinstance(_FLAG_IS_LOCAL_TPU.value, bool)
        assert _FLAG_IS_LOCAL_TPU.value
        tpu_config = tf_utils.init_tpus(local=True)
        utils.check_isinstance(tpu_config, tf_utils.TpuConfigType)
        utils.check_not_none(tpu_config)
        strategy = tf.distribute.TPUStrategy(tpu_config.resolver)
    elif device_type == "GPU":
        strategy = tf.distribute.MirroredStrategy(
            devices=tf.config.experimental.list_logical_devices('GPU'))
    else:
        raise RuntimeError(device_type)

    # ONLY GPU IS SUPPORTED
    print(tf.config.list_logical_devices())
    utils.check_isinstance(strategy, tf.distribute.MirroredStrategy)

    ##############################################################################
    # Load Model
    ##############################################################################
    with utils.log_duration(LOGGER, main.__name__, "All of model preparation"):
        with strategy.scope():
            # HF isn't able to read directly from GCS
            if (model_path.startswith("gs://")
                    and mode == constants.SaveModeChoices.hfh5):
                with utils.log_duration(LOGGER, main.__name__,
                                        "Download model from GS"):
                    with tempfile.TemporaryDirectory() as td:
                        td += os.path.sep

                        if os.path.exists("/root/google-cloud-sdk/bin/gsutil"):
                            exec_ = "/root/google-cloud-sdk/bin/gsutil"
                        else:
                            exec_ = "gsutil"

                        command = [
                            exec_,
                            "-m",
                            "cp",
                            "-r",
                            os.path.join(model_path, "*"),
                            td,
                        ]
                        LOGGER.debug("Running bash command: %s",
                                     " ".join(command))
                        subprocess.check_call(command)
                        LOGGER.debug("Files at the temp dir(%s): %s", td,
                                     str(os.listdir(td)))

                        model = make_model_tf(td, mode=mode)
            else:
                model = make_model_tf(model_path, mode=mode)

    utils.check_not_none(model)

    ##############################################################################
    # Load Dataset Pipeline
    ##############################################################################
    utils.check_contained(
        _FLAG_APPROACH_TYPE.value, {
            constants.ApproachTypeChoices.naked_lm,
            constants.ApproachTypeChoices.cached_pretok
        })
    devices = tf_utils.devices_to_use()
    num_replicas = (len(devices)
                    if devices[0].device_type in {"GPU", "TPU"} else 1)
    utils.check_equal(devices[0].device_type, "GPU")

    # Only a batch size of 1 is currently supported. We need attention masks
    batch_size = _FLAG_BATCH_SIZE.value * num_replicas
    approach_type = _FLAG_APPROACH_TYPE.value

    logging.debug("Loading dataset.")
    tokenizer = transformers.GPT2TokenizerFast.from_pretrained("gpt2-xl")
    ds = prep_ds_for_generation(
        dict(
            tokenizer=tokenizer,
            context_window_size=1024,
            dataset_name="kilt_eli5",
            batch_size=1,  # >> We set our own batch size elsewhere
            db_path=None,  # None,
            random_seed=0,
            use_subset=False,
            subset_size=-1,
            use_helper_words=True,
            approach_type=approach_type,
            num_retrievals=5,  # Will never change
            retrieval_temperature=1.,
            retriever=None,  # Cached retrievals don't need a retriever
            repeat=False,  # Will never change
            split=_FLAG_SPLIT.value,
            enable_debug_checks=False,
            retrieval_bank_size=5,  # Will never change
            dataset_type=_FLAG_DATASET_TYPE.value,
            tfr_prefix=_FLAG_TFR_PREFIX.value,
            qty_shuffle=1,  # Will never change
            max_length_generation=350),
        tokenizer,
        _FLAG_SPLIT.value)

    ds = strategy.experimental_distribute_dataset(ds)

    ##############################################################################
    # Generate
    ##############################################################################
    LOGGER.debug("Generating.")
    generations = []
    num_entries_in_split = (
        task_specific.DATASET_CARDINALITIES["kilt_eli5"][_FLAG_SPLIT.value])

    entries_counter = tqdm.tqdm(total=num_entries_in_split)

    for batch_no, batch in enumerate(ds):
        # Calling model.generate. We should make a config file with the
        # hyperparameters for generation, or make a facility in the one we already
        # have. I feel like a separate one would be better, separating concerns.
        output = strategy.run(
            model.generate,
            kwargs=dict(
                input_ids=batch,
                max_length=_FLAG_GENERATION_LENGTH_LIMIT.value,
                use_cache=True,
                attention_mask=tf.cast(batch != tokenizer.eos_token_id,
                                       tf.int32),
                repetition_penalty=2.,
                num_beams=5,
            ))
        output = tf_utils.process_strat_output(strategy_outputs=output,
                                               current_batch_size=batch_size,
                                               strategy=strategy,
                                               name="generations")

        #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
        # Display the inputs and outputs.
        #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

        rich_console = rich.console.Console(color_system="256")
        print_sample = make_print_sample()

        with utils.log_duration(LOGGER, "main",
                                "all of tokenizer.decode for a batch."):
            for i in range(batch_size):
                input_text = tokenizer.decode(batch.numpy()[i])
                output_text = tokenizer.decode(output.numpy()[i])
                print("#" * 1000)
                print(f"Batch {batch_no} Generation {i}")
                print_sample(input_text, f"input batch_no {batch_no}",
                             rich_console)
                print_sample(output_text, f"output batch_no {batch_no}",
                             rich_console)
                generations.append(output_text)
            print("#" * 1000)
        entries_counter.update(batch.shape[0])

    #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
    # Save the output to a JSON File.
    #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
    utils.to_json_file(
        os.path.join(_FLAG_OUTPUT_PATH.value, _FLAG_SPLIT.value,
                     _FLAG_APPROACH_TYPE.value,
                     time.strftime("%Y%m%d-%H%M%S.json")),
        dict(flags={
            flag.name: flag.value
            for flag in flags.FLAGS.flags_by_module_dict()[argv[0]]
        },
             generations=generations))
    logging.debug("Saved to: %s", _FLAG_OUTPUT_PATH.value)
def main(argv):
    if len(argv) > 1:
        raise app.UsageError("Too many command-line arguments.")

    absl_logging.use_python_logging()
    utils.log_module_args(LOGGER, argv[0])

    # Some checks for the flags
    utils.check_exists(FLAGS.source_text_path)
    utils.check_exists(os.path.dirname(FLAGS.subset_text_path))
    utils.check_exists(os.path.dirname(FLAGS.subset_embeddings_ds_path))
    utils.check_operator(operator.lt, FLAGS.subset_total, FLAGS.source_total)

    utils.check_glob_prefix(FLAGS.source_embeddings_prefix)

    # Select a random subset
    with utils.log_duration(LOGGER, "main", "preparing indices"):
        indices = np.random.choice(FLAGS.source_total,
                                   FLAGS.subset_total,
                                   replace=False)
        indices.sort()

    # Process the textual data
    # Much (5 min vs 2 h) faster than iterating through the records and writing
    # only those we want. An hypothesis for this is that
    # get_single_element would allow to get elements without parsing all of the
    # elements along the way, like simply iterating through the records would.
    # Or did they get constant time indexing in TFRecords?
    # Inspired by the ORQA codebase:
    # https://github.com/google-research/language/blob/master/language/orqa/models/orqa_model.py#L147
    with utils.log_duration(LOGGER, "main", "preparing data"):
        text_ds = tf.data.TFRecordDataset(FLAGS.source_text_path,
                                          buffer_size=512 * 1024 * 1024,
                                          num_parallel_reads=os.cpu_count())
        text_ds = text_ds.batch(FLAGS.source_total)
        text_ds = tf.data.experimental.get_single_element(text_ds)
        subset = tf.gather(text_ds, tf.constant(indices))

    with utils.log_duration(LOGGER, "main", "writing text data"):
        with tf.io.TFRecordWriter(FLAGS.subset_text_path) as text_writer:
            for text in tqdm.tqdm(subset, total=FLAGS.subset_total):
                text = text.numpy()
                # REALM's data uses no packaging of the data into features, etc.
                text_writer.write(text)

    with utils.log_duration(LOGGER, "main", "All of the embedding task"):
        # Process the embeddings data
        with tf.device("/cpu:0"):
            with utils.log_duration(LOGGER, "main", "Loading the checkpoint"):
                embs = tf.train.load_checkpoint(
                    FLAGS.source_embeddings_prefix).get_tensor("block_emb")
                utils.check_equal(embs.shape[0], FLAGS.source_total)

            with utils.log_duration(LOGGER, "main",
                                    "taking a subset of the indices"):
                subset = embs[indices]

            tf_db = tf.Variable(subset, shape=subset.shape)
            ckpt = tf.train.Checkpoint(block_emb=tf_db)

            with utils.log_duration(LOGGER, "main", "Saving the checkpoint"):
                ckpt.save(FLAGS.subset_embeddings_ds_path)

        LOGGER.debug("Done")
Пример #5
0
def main(argv):
    if len(argv) > 1:
        raise RuntimeError(argv)
    absl_logging.use_python_logging()
    retriever_config = tf_utils.REALMSave(
        **utils.from_json_file(_FLAG_RETRIEVER_CONFIG_PATH.value))

    extra = "_FROM_SUBSET" if _FLAG_USE_SUBSET.value else ""
    time_stamp = time.strftime("%Y%m%d-%H%M%S")
    target_path = os.path.join(_FLAG_OUTPUT_PATH.value,
                               time_stamp + extra).strip()
    if target_path[-1] != "/":
        target_path += "/"

    ##############################################################################
    # Setup devices and strategy
    ##############################################################################
    with utils.log_duration(LOGGER, "main", "Initializing devices"):
        tpu_config = tf_utils.init_tpus()
        device_type = tf_utils.current_accelerator_type()
        LOGGER.debug("Devices: %s", str(tf_utils.devices_to_use()))

        if device_type == "TPU":
            if tpu_config is None:
                raise RuntimeError("We should have a tpu_config.")
            strategy = tf.distribute.TPUStrategy(tpu_config.resolver)
            batch_size = len(
                tf_utils.devices_to_use()) * _FLAG_BATCH_SIZE.value
        elif device_type == "GPU" or device_type == "CPU":
            strategy = tf.distribute.MirroredStrategy()
            batch_size = len(
                tf_utils.devices_to_use()) * _FLAG_BATCH_SIZE.value
        else:
            raise RuntimeError(device_type)

    ##############################################################################
    # Load the dataset.
    ##############################################################################
    eli5 = {}
    keys = ["train", "eval", "test"]
    gpt2_tokenizer = transformers.GPT2TokenizerFast.from_pretrained("gpt2-xl")
    gpt2_tokenizer.pad_token = gpt2_tokenizer.eos_token

    with utils.log_duration(LOGGER, "main", "Loading the ELI5 datasets."):
        for split in tqdm.tqdm(keys):
            load_path = os.path.join(_FLAGS_DATASET_ROOT.value,
                                     "HuggingfaceDatasets",
                                     f"{split}_kilt_eli5.hf")
            with tf.device("/job:localhost"):
                eli5[split] = datasets.load_from_disk(load_path)

    if _FLAG_USE_SUBSET.value:
        _warn_subset()

    ##############################################################################
    #
    ##############################################################################
    with utils.log_duration(LOGGER, "Main", "Load the textual dataset"):
        # Extract the appropriate text
        # The buffer_size is taken from the original ORQA code.
        blocks_dataset = tf.data.TFRecordDataset(retriever_config.text_records,
                                                 buffer_size=512 * 1024 * 1024)
        blocks_dataset = blocks_dataset.batch(
            retriever_config.num_block_records, drop_remainder=True)
        blocks = tf.data.experimental.get_single_element(blocks_dataset)

    with tempfile.TemporaryDirectory() as tmp_dir:
        ############################################################################
        # Prepare the output file.
        ############################################################################
        tmp_dir = pathlib.Path(tmp_dir)
        h5_output_path = tmp_dir / "codes.h5"
        output_file = h5py.File(h5_output_path, "w")
        flags_dict = {
            flag.name: flag.value
            for flag in flags.FLAGS.flags_by_module_dict()[argv[0]]
        }
        utils.to_json_file(tmp_dir / "params.json", flags_dict)

        for split in keys:
            with utils.log_duration(
                    LOGGER, "main",
                    "Creating the output hdf5 file, embeddings."):
                num_entries = len(eli5[split]["id"])
                if _FLAG_USE_SUBSET.value:
                    num_entries = min(num_entries, _FLAG_SUBSET_AMOUNT.value)
                split_group = output_file.create_group(split)

            with utils.log_duration(
                    LOGGER, "main",
                    "Creating the output hdf5 file, retrieval."):
                split_group.create_dataset(
                    constants.CTH5Fields.distances,
                    shape=(num_entries, _FLAG_NUM_RETRIEVALS.value),
                    dtype=np.float32,
                )
                split_group.create_dataset(
                    constants.CTH5Fields.gpt2_question_ids_inputs,
                    shape=(num_entries, _FLAG_CONTEXT_SIZE.value),
                    dtype=np.int32)
                if split != "test":
                    split_group.create_dataset(
                        constants.CTH5Fields.gpt2_answer_ids_inputs,
                        shape=(num_entries, _FLAG_CONTEXT_SIZE.value),
                        dtype=np.int32)

                split_group.create_dataset(
                    constants.CTH5Fields.gpt2_retrieved_ids,
                    shape=(
                        num_entries,
                        _FLAG_NUM_RETRIEVALS.value,
                        _FLAG_MAX_LENGTH_RETRIEVALS.value,
                    ),
                    dtype=np.int32)

            with utils.log_duration(LOGGER, "main",
                                    "Loading the reference db."):
                checkpoint_path = os.path.join(
                    retriever_config.query_embedder_path, "encoded",
                    "encoded.ckpt")

                reference_db_device = tf_utils.device_mapping().CPUs[0].name
                with tf.device(reference_db_device):
                    reference_db = tf_utils.load_reference_db(
                        checkpoint_path,
                        variable_name="block_emb",
                    )

        ############################################################################
        # Prep the encoder and the tokenizer
        ############################################################################
        with utils.log_duration(
                LOGGER, "main",
                "Loading the encoder model and the tokenizer."):
            with strategy.scope():
                query_encoder = hub.load(retriever_config.query_embedder_path,
                                         tags={})
            encode_fn = _make_encode_fn(query_encoder)
            encode_fn_strategy_run = _make_encode_fn_strategy_run_fn(
                strategy=strategy,
                encode_fn=encode_fn,
            )

            vocab_file = os.path.join(retriever_config.query_embedder_path,
                                      "assets", "vocab.txt")
            utils.check_exists(vocab_file)
            do_lower_case = query_encoder.signatures["tokenization_info"](
            )["do_lower_case"]
            tokenization_info = dict(vocab_file=vocab_file,
                                     do_lower_case=do_lower_case)

            tokenizer, vocab_lookup_table = bert_utils.get_tf_tokenizer(
                query_encoder, tokenization_info)

        ############################################################################
        # Preprocess the dataset
        ############################################################################

        cls_token_id = tf.cast(vocab_lookup_table.lookup(tf.constant("[CLS]")),
                               tf.int32)
        sep_token_id = tf.cast(vocab_lookup_table.lookup(tf.constant("[SEP]")),
                               tf.int32)
        transform = _make_transform_fn(
            bert_tokenizer=tokenizer,
            bert_cls_token_id=cls_token_id,
            bert_sep_token_id=sep_token_id,
        )

        with utils.log_duration(LOGGER, "main", "generating codes"):
            tqdm_splits = tqdm.tqdm(keys)
            for split in tqdm_splits:
                tqdm_splits.set_description(f"Split `{split}`")
                eli5: Dict[str, datasets.Dataset]
                write_start = 0

                if _FLAG_USE_SUBSET.value:
                    _warn_subset(tqdm_splits)
                    eli5[split] = eli5[split][:_FLAG_SUBSET_AMOUNT.value]
                    utils.check_operator(operator.le, len(eli5[split]["id"]),
                                         _FLAG_SUBSET_AMOUNT.value)
                    utils.check_operator(operator.le,
                                         len(eli5[split]["input"]),
                                         _FLAG_SUBSET_AMOUNT.value)
                else:
                    utils.check_equal(len(eli5[split]), len(eli5[split]["id"]))
                    utils.check_equal(len(eli5[split]),
                                      len(eli5[split]["input"]))

                if split != "test":
                    for_slices = dict(sample_id=eli5[split]["id"],
                                      question=eli5[split]["input"],
                                      answer=[
                                          sample["answer"][0]
                                          for sample in eli5[split]["output"]
                                      ])
                else:
                    for_slices = dict(
                        sample_id=eli5[split]["id"],
                        question=eli5[split]["input"],
                    )

                ds = tf.data.Dataset.from_tensor_slices(for_slices)
                ds = ds.map(transform,
                            num_parallel_calls=tf.data.experimental.AUTOTUNE)

                ds = ds.apply(
                    tf.data.experimental.dense_to_ragged_batch(batch_size))
                ds = ds.map(_squeeze,
                            num_parallel_calls=tf.data.experimental.AUTOTUNE)

                tqdm_inner = tqdm.tqdm(enumerate(ds),
                                       total=len(eli5[split]["id"]) //
                                       _FLAG_BATCH_SIZE.value,
                                       desc=f"Split `{split}`: Batches")

                for i, batch in tqdm_inner:
                    ######################################################################
                    # Enforce the current real batch size
                    ######################################################################
                    current_batch_size = batch["sample_id"].shape[0]
                    for k, v in batch.items():
                        utils.check_equal(v.shape[0], current_batch_size)
                    ######################################################################

                    gpt2_question_ids_inputs = _prep_field(
                        batch["question"], gpt2_tokenizer)
                    utils.check_equal(gpt2_question_ids_inputs.dtype, np.int32)
                    utils.check_equal(gpt2_question_ids_inputs.shape[0],
                                      current_batch_size)

                    if split != "test":
                        gpt2_answer_ids_inputs = _prep_field(
                            batch["answer"], gpt2_tokenizer)
                        utils.check_equal(gpt2_answer_ids_inputs.dtype,
                                          np.int32)
                        utils.check_equal(gpt2_answer_ids_inputs.shape[0],
                                          current_batch_size)

                        assert len(gpt2_answer_ids_inputs.shape) == 2, (
                            gpt2_answer_ids_inputs.shape)

                    ######################################################################
                    # Save the gpt2 tokenized question and answer
                    ######################################################################
                    end = write_start + current_batch_size

                    utils.check_equal(
                        output_file[split][
                            constants.CTH5Fields.gpt2_question_ids_inputs]
                        [write_start:end].shape[0], current_batch_size)
                    output_file[split][
                        constants.CTH5Fields.gpt2_question_ids_inputs][
                            write_start:end] = gpt2_question_ids_inputs

                    if split != "test":
                        output_file[split][
                            constants.CTH5Fields.gpt2_answer_ids_inputs][
                                write_start:end] = gpt2_answer_ids_inputs

                    ######################################################################
                    # Encode the samples.
                    ######################################################################
                    batch = strategy.experimental_distribute_values_from_function(
                        tf_utils.make_dict_distribute_fn(batch))

                    embeddings = encode_fn_strategy_run(batch)
                    embeddings = tf_utils.process_strat_output(
                        embeddings, "embeddings", strategy, current_batch_size)
                    utils.check_isinstance(embeddings, ops.EagerTensor)
                    utils.check_equal(embeddings.shape[0], current_batch_size)

                    # pytype doesn't seem to see that we check the type
                    utils.check_equal(embeddings.shape[1],
                                      _FLAG_EMBEDDING_DEPTH.value)  # pytype: disable=attribute-error

                    ######################################################################
                    # Retrieve.
                    ######################################################################
                    with tf.device(reference_db_device):
                        top_k, inner_prods = tf_utils.mips_exact_search(
                            embeddings, _FLAG_NUM_RETRIEVALS.value,
                            reference_db)
                    top_k = tf_utils.process_strat_output(
                        top_k, "top_k", strategy, current_batch_size)
                    utils.check_equal(
                        inner_prods.shape,
                        (current_batch_size, _FLAG_NUM_RETRIEVALS.value))
                    utils.check_equal(
                        top_k.shape,
                        (current_batch_size, _FLAG_NUM_RETRIEVALS.value))

                    output_file[split]["distances"][
                        write_start:end] = inner_prods

                    gathered = tf.gather(blocks, top_k).numpy()
                    utils.check_equal(gathered.shape[0], current_batch_size)

                    utils.check_equal(write_start + gathered.shape[0], end)
                    for j in range(gathered.shape[0]):
                        local_gathered = gathered[j].tolist()
                        utils.check_equal(len(local_gathered),
                                          _FLAG_NUM_RETRIEVALS.value)
                        local_gathered = [
                            sample.decode() for sample in local_gathered
                        ]
                        token_ids = np.array(
                            gpt2_tokenizer.batch_encode_plus(
                                local_gathered,
                                padding="max_length",
                                truncation=True,
                            ).input_ids)
                        for line in token_ids:
                            assert not np.all(line == 0), line

                        token_ids[token_ids ==
                                  gpt2_tokenizer.eos_token_id] = -1
                        output_file[split][
                            constants.CTH5Fields.gpt2_retrieved_ids][
                                write_start +
                                j] = token_ids[:, :_FLAG_MAX_LENGTH_RETRIEVALS.
                                               value]

                    write_start += current_batch_size
        ############################################################################
        # Upload the results to GCS
        ############################################################################
        LOGGER.debug("DONE WITH THE PRODUCTION")
        output_file.close()
        with utils.log_duration(LOGGER, "main", "gsutil transfer"):
            command = [
                "/root/google-cloud-sdk/bin/gsutil", "-m", "cp", "-r",
                str(tmp_dir / "*"), target_path
            ]
            LOGGER.debug("Command: %s", " ".join(command))
            subprocess.check_call(command)
        LOGGER.debug("ALL DONE")
Пример #6
0
def main(argv):
    if len(argv) > 1:
        raise app.UsageError("Too many command-line arguments.")

    absl_logging.use_python_logging()
    utils.log_module_args(LOGGER, argv[0])

    utils.check_exists(FLAGS.scann_config_path)
    utils.check_glob_prefix(FLAGS.embeddings_ckpt_path)
    utils.check_exists(FLAGS.output_dir)
    if not tf.io.gfile.isdir(FLAGS.output_dir):
        raise RuntimeError("Output dir needs to be a directory.")

    ##############################################################################
    # Setup: Build the ScaNN (Scam) searcher
    ##############################################################################
    with utils.log_duration(LOGGER, "main", "load_scann_searcher"):
        checkpoint_path = os.path.join(FLAGS.embeddings_ckpt_path)
        # The conversion to a ScannConfig object enforces that all the fields we
        # expect are present in the json file.
        scann_config = retrievers.ScannConfig(
            **utils.from_json_file(FLAGS.scann_config_path))
        block_emb, scann_searcher = scann_utils.load_scann_searcher(
            var_name="block_emb",
            checkpoint_path=checkpoint_path,
            **vars(scann_config))
    utils.check_operator(operator.ge, block_emb.shape[0], FLAGS.test_how_many)

    ##############################################################################
    # Recall Computation
    ##############################################################################
    LOGGER.debug(block_emb.shape)
    utils.check_operator(operator.ge, block_emb.shape[0], FLAGS.test_how_many)
    with utils.log_duration(LOGGER, "main", "all retrievals & comparisons"):
        LOGGER.debug("block_emb.shape: %s", str(block_emb.shape))
        LOGGER.debug("FLAGS.test_how_many: %d", FLAGS.test_how_many)
        all_indices = np.random.choice(block_emb.shape[0],
                                       FLAGS.test_how_many,
                                       replace=False)
        count_total = 0
        count_good = 0
        for i, idx_start in tqdm.tqdm(
                enumerate(range(0, len(all_indices), FLAGS.batch_size))):
            indices = all_indices[idx_start:idx_start + FLAGS.batch_size]
            vectors = tf.gather(block_emb, indices)

            if FLAGS.mode == "all":
                with utils.log_duration(LOGGER, "main", "exact_search"):
                    labels = exact_search(FLAGS.num_neighbors, vectors,
                                          block_emb)
            elif FLAGS.mode == "any":
                labels = tf.cast(tf.expand_dims(indices, -1), tf.int32)
            else:
                raise RuntimeError(FLAGS.mode)

            with utils.log_duration(LOGGER, "main", "scann_search"):
                predictions, _ = scann_searcher.search_batched(vectors)
            good = tf.sets.intersection(labels, predictions)
            count_good += len(good.values)
            count_total += tf.math.reduce_prod(labels.shape)
            ratio = count_good / count_total
            if i % FLAGS.print_every_n_batches == 0 and i != 0:
                LOGGER.debug("Recall so far: %f %%", 100 * ratio)

    final_recall = count_good / count_total
    LOGGER.debug(
        "Final recall for mode `%(mode)s` with `%(num_neighbors)d` "
        "neighbors: %(recall)f %%",
        dict(mode=FLAGS.mode,
             num_neighbors=FLAGS.num_neighbors,
             recall=100 * final_recall))
    LOGGER.debug("%d true positives over %d points.", count_good, count_total)

    ##############################################################################
    # Build the output object and save it.
    ##############################################################################
    output = {}
    output["flags"] = {
        flag.name: flag.value
        for flag in FLAGS.flags_by_module_dict()[argv[0]]
    }
    output["recall"] = float(final_recall)
    # Redundant but easier to read
    output["count_goods"] = int(count_good)
    output["count_total"] = int(count_total)
    output_path = os.path.join(
        FLAGS.output_dir,
        "test_recall_" + time.strftime("results_%Y%m%d-%H%M%S.json"))
    utils.to_json_file(output_path, output)
Пример #7
0
def main(argv):
    ##############################################################################
    # Initial Setup. Logging, Flags, Random seeds.
    ##############################################################################
    if len(argv) > 1:
        raise app.UsageError("Too many command-line arguments.")
    absl_logging.use_python_logging()
    flags_dict = {
        flag.name: flag.value
        for flag in FLAGS.flags_by_module_dict()[argv[0]]
    }

    if FLAGS.use_subset:
        message = (f"{colorama.Back.RED}{colorama.Fore.WHITE}"
                   f"{colorama.Style.BRIGHT}USING A SUBSET OF THE DATASET"
                   f"{colorama.Style.RESET_ALL}")
        LOGGER.warning(message)

    utils.log_module_args(LOGGER, argv[0])
    if not FLAGS.output_dir.startswith("gs://"):
        utils.check_exists(FLAG_OUTPUT_DIR.value)
        if not tf.io.gfile.isdir(FLAG_OUTPUT_DIR.value):
            raise RuntimeError("Output dir needs to be a directory.")

    tf.random.set_seed(FLAG_RANDOM_SEED.value)
    np.random.seed(FLAG_RANDOM_SEED.value)

    # Prepare the instance output directory path and save the config there
    # Prepare the path
    folder_name = time.strftime(
        f"{FLAG_RUN_NAME.value}_{FLAG_APPROACH_TYPE.value}_%Y%m%d-%H%M%S")
    instance_output_dir = os.path.join(FLAG_OUTPUT_DIR.value,
                                       folder_name).strip()
    if not instance_output_dir.endswith("/"):
        instance_output_dir += "/"
    json_target = os.path.join(instance_output_dir, "training_params.json")

    # Make the folder if we're not on gcloud
    if not json_target.strip().startswith("gs://"):
        subprocess.check_call(["mkdir", "-p", instance_output_dir])

    # Safe the config file
    utils.to_json_file(json_target, flags_dict)

    ##############################################################################
    # Initialization and Configuration of the Devices.
    ##############################################################################
    tpu_setup = None

    accel = tf_utils.current_accelerator_type()
    if FLAG_TPU_IS_LOCAL.value:
        assert accel == "TPU", accel
    if accel == "TPU":
        assert FLAG_TPU_IS_LOCAL.value, FLAG_TPU_IS_LOCAL.value

    if tf_utils.current_accelerator_type() in {"CPU", "TPU"}:
        tpu_setup = tf_utils.init_tpus(tpu_name=FLAG_TPU_NAME.value,
                                       local=FLAG_TPU_IS_LOCAL.value)

    LOGGER.debug("Devices we are computing on:\n%s",
                 utils.wrap_iterable(map(str, tf_utils.devices_to_use())))
    LOGGER.debug("All devices:")
    LOGGER.debug(tf_utils.device_mapping())

    if tf_utils.current_accelerator_type() == "GPU":
        tf.config.set_soft_device_placement(True)

    if tf_utils.current_accelerator_type() != "TPU":
        tf.debugging.set_log_device_placement(True)

    utils.check_operator(operator.ne, tf_utils.current_accelerator_type(),
                         "CPU")

    assert FLAG_TPU_NAME.value == socket.gethostname(), (
        "This is a configuration choice. You can remove this. "
        "There will be no side effects.")

    if FLAG_DISTRIBUTE_MODE.value in constants.PURE_DATA_PARALLEL_STRATEGIES:
        actual_num_replicas = len(tf_utils.devices_to_use())
    elif FLAG_DISTRIBUTE_MODE.value in constants.DATA_PARALLEL_DMC:
        actual_num_replicas = FLAG_NUM_REPLICAS.value
    else:
        actual_num_replicas = 1

    ##############################################################################
    # We load the retriever model if it is needed.
    ##############################################################################
    # Not currently used. See old commits.
    retriever = None

    ##############################################################################
    # Distributed training task
    ##############################################################################
    if FLAG_TASK.value == constants.TaskChoices.train:
        with utils.log_duration(LOGGER, "main", "Load model"):
            utils.print_mem("before loading model", LOGGER)
            model_specific = task_specific.load_model(
                FLAG_MODEL_KEY.value, FLAG_DISTRIBUTE_MODE.value, tpu_setup,
                FLAG_NUM_REPLICAS.value)
            utils.print_mem("after loading model", LOGGER)
            model = model_specific.model
            if isinstance(model, list):
                model: List[transformers.TFGPT2LMHeadModel]
            else:
                model: transformers.TFGPT2LMHeadModel

            tokenizer = model_specific.tokenizer

            def make_optimizer():
                if FLAG_OPTIMIZER_TYPE.value == constants.OptimizerTypes.adafactor:
                    return tensor2tensor.utils.adafactor.AdafactorOptimizer(
                        learning_rate=FLAG_LEARNING_RATE.value)
                elif FLAG_OPTIMIZER_TYPE.value == constants.OptimizerTypes.adam:
                    return tf.keras.optimizers.Adam(
                        learning_rate=FLAG_LEARNING_RATE.value)
                else:
                    raise ValueError(FLAG_OPTIMIZER_TYPE.value)

            if model_specific.strategy:
                with model_specific.strategy.scope():
                    optimizer = make_optimizer()
            else:
                optimizer = make_optimizer()

        ############################################################################
        # Prepare the dataset functions
        ############################################################################
        rg = np.random.default_rng(FLAG_RANDOM_SEED.value)

        def call_lm_preproc(repeat, split, random_seed):
            """Using functools.partial prevents the linter from doing its job."""
            if FLAG_DATASET_NAME.value == constants.DatasetNameChoices.kilt_eli5:
                return task_specific.create_lm_ds_kilt_eli5(
                    tokenizer=tokenizer,
                    context_window_size=model.config.n_positions,
                    dataset_name=FLAG_DATASET_NAME.value,
                    # Batches are split over the replicas:
                    batch_size=FLAG_BATCH_SIZE.value * actual_num_replicas,
                    db_path=FLAG_DB_PATH.value,
                    random_seed=random_seed,
                    use_subset=FLAG_USE_SUBSET.value,
                    subset_size=FLAG_SUBSET_SIZE.value,
                    use_helper_words=FLAG_USE_HELPER_WORDS.value,
                    approach_type=FLAG_APPROACH_TYPE.value,
                    num_retrievals=FLAG_NUM_RETRIEVALS.value,
                    retrieval_temperature=FLAG_RETRIEVAL_TEMPERATURE.value,
                    retriever=retriever,
                    repeat=repeat,
                    split=split,
                    enable_debug_checks=FLAG_DATASET_DEBUG.value,
                    retrieval_bank_size=FLAG_RETRIEVAL_BANK_SIZE.value,
                    dataset_type=FLAG_DATASET_TYPE.value,
                    qty_shuffle=FLAG_QTY_SHUFFLE.value,
                    tfr_prefix=FLAG_TFR_PREFIX.value,
                    max_length_generation=FLAG_MAX_LENGTH_GENERATION.value,
                )
            else:
                raise NotImplementedError(
                    f"FLAG_DATASET_NAME.value unsupported: `{FLAG_DATASET_NAME.value}`"
                )

        make_training_dataset: Callable[...,
                                        tf.data.Dataset] = functools.partial(
                                            call_lm_preproc,
                                            split="train",
                                            repeat=False,
                                        )
        make_eval_dataset: Callable[..., tf.data.Dataset] = functools.partial(
            call_lm_preproc,
            split="eval",
            repeat=True,
        )

        ############################################################################
        # Prepare the step functions
        ############################################################################
        utils.check_contained(FLAG_DISTRIBUTE_MODE.value,
                              constants.DistributeModeChoices.choices())
        tf_function_flags = dict(
            experimental_compile=FLAG_EXPERIMENTAL_COMPILE.value,
            experimental_relax_shapes=not FLAG_INPUT_FIXED_SIZE.value)

        training_step = build_regular_training_step(
            model,
            optimizer,
            strategy=model_specific.strategy,
            tf_function_kwargs=tf_function_flags)

        evaluation_step = build_evaluation_step(model, tf_function_flags)

        timestamp_last_ckpt_secs = time.time()
        # Model checkpoints are saved to the tmp_directory and then rsynced to GCS

        ############################################################################
        # Prepare the statistics and the logging facilities.
        ############################################################################
        # Tensorboard
        with model_specific.strategy.scope():
            checkpoint = tf.train.Checkpoint(optimizer=optimizer, model=model)
        saver = Saver(instance_output_dir, checkpoint)
        train_log_dir = os.path.join(instance_output_dir, "tensorboard",
                                     "train")
        eval_log_dir = os.path.join(instance_output_dir, "tensorboard", "eval")
        flags_log_dir = os.path.join(instance_output_dir, "tensorboard",
                                     "params")
        writers = dict(train=tf.summary.create_file_writer(train_log_dir),
                       eval=tf.summary.create_file_writer(eval_log_dir),
                       flags=tf.summary.create_file_writer(flags_log_dir))
        with writers["flags"].as_default():
            tf.summary.text(
                "Flags",
                # Tensorboard takes Markdown:
                json.dumps(flags_dict, indent=4).replace("\n", "\n\n"),
                step=0)

        # Different information to log.
        ma_loss = dict(train=utils.MovingAverage(0.9),
                       eval=utils.MovingAverage(0.9))
        step_counters = dict(train=0, eval=0)
        batch_counters = dict(train=0, eval=0)
        prev_batch_end = time.time()

        ############################################################################
        # Create the Eval DS object.
        # ==========================================================================
        # The eval ds has no real concept of epoch, repeats forever, shuffling
        # each time it reaches its end.
        ############################################################################
        # Create
        with utils.log_duration(LOGGER, "main", "All of make_eval_dataset"):
            eval_ds_instance = make_eval_dataset(random_seed=rg.integers(
                -2**63, 2**63 - 1), )
        # Maybe distribute
        LOGGER.debug("Distributing the eval dataset to the replicas.")
        if FLAG_DATASET_TYPE.value == "tfr":
            eval_ds_instance = (
                model_specific.strategy.experimental_distribute_dataset(
                    eval_ds_instance))
        # Start the iteration. We step by calling `next(...)`.
        LOGGER.debug("Done distributing the eval dataset to the replicas.")
        eval_ds_instance = iter(eval_ds_instance)
        step_function = dict(train=training_step, eval=evaluation_step)

        ############################################################################
        # Training Loop
        # ==========================================================================
        # Create a new training dataset object that lasts for one epoch.
        # This is different from the eval training dataset object, which loops
        # forever.
        ############################################################################
        for epoch in itertools.count():
            ##########################################################################
            # Epoch Setup
            ##########################################################################
            LOGGER.debug("EPOCH %d START", epoch)
            # Shuffle differently every epoch
            with utils.log_duration(LOGGER, "main",
                                    "All of make_training_dataset"):
                train_ds_instance = make_training_dataset(
                    random_seed=rg.integers(-2**63, 2**63 - 1), )
            LOGGER.debug(
                "Attempting to distribute the training dataset to the replicas."
            )
            if FLAG_DATASET_TYPE.value == "tfr":
                train_ds_instance = (
                    model_specific.strategy.experimental_distribute_dataset(
                        train_ds_instance))

            LOGGER.debug(
                "Done distributing the training dataset to the replicas.")
            train_ds_instance = iter(train_ds_instance)

            # To change splits, we use `itertools.islice` over the dataset generator.
            # When the training dataset generator is done, a new loop of the following
            # while loop occurs, but no training batch is done because we are taking
            # an `islice` of a generator that is done.
            did_at_least_one_training_batch = True
            split = "eval"
            while did_at_least_one_training_batch:
                utils.check_operator(operator.ne,
                                     tf_utils.current_accelerator_type(),
                                     "CPU")

                # Invert split
                if split == "train":
                    split = "eval"
                else:
                    split = "train"

                # Prepare to test if we did at least one training batch
                if split == "train":
                    did_at_least_one_training_batch = False

                ########################################################################
                # Take slices from the dataset iterator
                # ======================================================================
                # We only want to do a certain number of batches before switching splits
                # We do this by using an `itertools.islice` of the dataset iterators.
                ########################################################################
                if split == "train":
                    dataset_iterator = toolz.take(
                        FLAG_BATCHES_BETWEEN_EVALS.value, train_ds_instance)
                else:
                    # The evaluation dataset generator is infinite, reshuffles everytime
                    # it gets to its end.
                    # Still, we take a fixed size slice form that infinite generator.
                    dataset_iterator = toolz.take(
                        FLAG_NUMBER_EVAL_BATCHES.value, eval_ds_instance)

                LOGGER.debug("Batching")
                for batch in dataset_iterator:
                    if FLAG_LOG_SAMPLES.value:
                        ####################################################################
                        # Print elements of the dataset
                        ####################################################################
                        # Make ourselves resistant to values possibly being a PerReplica
                        # object
                        LOGGER.warning(
                            f"%(red)sLOGGING SAMPLES. THIS IS VERY SLOW.%(reset)s",
                            dict(
                                red=colorama.Fore.RED,
                                reset=colorama.Style.RESET_ALL,
                            ))
                        is_distributed = isinstance(batch["input_ids"],
                                                    values.PerReplica)
                        for in_batch_idx in range(FLAG_BATCH_SIZE.value):
                            for replica_idx in (range(actual_num_replicas)
                                                if is_distributed else [0]):
                                if is_distributed:
                                    sample = {
                                        k: batch[k].values[replica_idx]
                                        for k in batch
                                    }
                                else:
                                    sample = batch

                                # input_sentence = tokenizer.decode(
                                #   [x for x in sample["input_ids"][i] if x != tokenizer.eos_token_id]
                                # )

                                # LOGGER.debug(
                                #   "%sInput [%d / %d]%s:\n\"%s\"",
                                #   colorama.Fore.GREEN,
                                #   replica_idx + 1,
                                #   actual_num_replicas,
                                #   colorama.Style.RESET_ALL,
                                #   input_sentence,
                                # )
                                #
                                # answer = tokenizer.decode(
                                #   [(x if x != -100 else 0) for x in sample["label_ids"][i]]
                                # )
                                # LOGGER.debug(
                                #   "%sLabel [%d / %d]%s:\n\"%s\"",
                                #   colorama.Fore.GREEN,
                                #   replica_idx + 1,
                                #   actual_num_replicas,
                                #   colorama.Style.RESET_ALL,
                                #   answer,
                                # )

                                cons = console.Console()
                                sentences = table.Table()
                                sentences.add_column("BPE Index",
                                                     justify="center")
                                sentences.add_column("Inputs",
                                                     justify="center")
                                sentences.add_column("Labels",
                                                     justify="center")
                                for bpe_idx, (x, y) in enumerate(
                                        itertools.zip_longest(
                                            sample["input_ids"]
                                            [in_batch_idx].numpy(),
                                            sample["label_ids"]
                                            [in_batch_idx].numpy(),
                                            fillvalue=None,
                                        )):
                                    x_w = tokenizer.decode(
                                        [x]) if x >= 0 else f"[ {x} ]"
                                    y_w = tokenizer.decode(
                                        [y]) if y >= 0 else f"[ {y} ]"
                                    sentences.add_row(str(bpe_idx), x_w, y_w)

                                cons.print(sentences)

                    # We only care about training epochs as, obviously, we don't train
                    # over eval samples; the number of  eval samples seen only
                    # contributes to lowering the variance in the evaluation of when to
                    # do early stopping.
                    if split == "train":
                        did_at_least_one_training_batch = True

                    input_ids = batch["input_ids"]
                    label_ids = batch["label_ids"]

                    # Per split step counter
                    step_counters[
                        split] += FLAG_BATCH_SIZE.value * actual_num_replicas
                    batch_counters[split] += 1

                    ######################################################################
                    # Model step function.
                    ######################################################################
                    step_function_kwargs = dict(
                        input_ids=input_ids,
                        label_ids=label_ids,
                    )

                    utils.print_mem(f"[{split}] - Mem before `strategy.run`",
                                    LOGGER)
                    LOGGER.debug("[%s] - Calling `strategy.run`", split)
                    loss = model_specific.strategy.run(
                        step_function[split], kwargs=step_function_kwargs)
                    LOGGER.debug("[%s] - Done `strategy.run`", split)
                    utils.print_mem(f"[{split}] - Mem after `strategy.run`",
                                    LOGGER)

                    ####################################################################
                    # End of logging step code / Logging and saving the model.
                    ####################################################################
                    if (FLAG_DISTRIBUTE_MODE.value
                            in constants.PURE_DATA_PARALLEL_STRATEGIES):
                        utils.check_equal(len(loss.values),
                                          actual_num_replicas)
                        LOGGER.debug("[%s] - Real num replicas: %s", split,
                                     actual_num_replicas)
                        average_loss = float(
                            tf.math.reduce_mean(loss.values).numpy())

                        LOGGER.debug("[%s] - Loss: %s", str(split),
                                     str(average_loss))

                    else:
                        average_loss = float(loss.numpy())

                    tf.debugging.check_numerics(
                        loss.values if isinstance(loss, values.PerReplica) else
                        loss, "Numerics failed.")

                    now = time.time()
                    batch_duration = now - prev_batch_end
                    prev_batch_end = now
                    ma_loss[split].update(average_loss)

                    LOGGER.info("[%s] - Epoch: # %d", split, epoch)
                    LOGGER.info("[%s] - Tensorboard_dir: %s", split,
                                instance_output_dir)
                    LOGGER.info("[%s] - Batch: # %d", split,
                                batch_counters[split])
                    LOGGER.info("[%s] - Step:  # %d", split,
                                step_counters[split])
                    if FLAG_USE_SUBSET.value:
                        LOGGER.warning(">> USING A SUBSET OF THE DATASET <<")
                    LOGGER.info(
                        "[%(split)s] - Batch loss:           %(metric)f",
                        dict(split=split, metric=average_loss))
                    LOGGER.info(
                        "[%(split)s] - Moving average loss:  %(metric)f",
                        dict(split=split, metric=ma_loss[split].average))
                    LOGGER.info(
                        "[%(split)s] - Moving average ppl:   %(metric)f",
                        dict(split=split,
                             metric=np.exp(ma_loss[split].average)))
                    LOGGER.info(
                        "[%(split)s] - Batch duration:       %(duration)s",
                        dict(split=split,
                             duration=utils.TimeStamp.from_seconds(
                                 batch_duration).format()))

                    # Write to Tensorboard
                    with writers[split].as_default():
                        tf.summary.scalar(f"Loss/{split}", average_loss,
                                          step_counters[split])
                        tf.summary.scalar(f"PPL/{split}", np.exp(average_loss),
                                          step_counters[split])
                    writers[split].flush()

                    ######################################################################
                    # Save every `FLAG_SAVE_PERIOD_MIN.value` minutes.
                    ######################################################################
                    delta_sec = time.time() - timestamp_last_ckpt_secs
                    utils.check_operator(operator.gt, delta_sec, 0)
                    period_sec = 60 * FLAG_SAVE_PERIOD_MIN.value
                    utils.check_operator(operator.gt, period_sec, 0)
                    ratio = delta_sec / period_sec
                    LOGGER.info(
                        "[%(split)s] - RATIO:                  %(ratio)s",
                        dict(split=split, ratio=str(ratio)))
                    LOGGER.info(
                        "[%(split)s] - Target: %(target)s, Present: %(present)s",
                        dict(
                            split=split,
                            target=str(period_sec),
                            present=str(delta_sec),
                        ))

                    if ratio >= 1:
                        dur = delta_sec / 60
                        timestamp_last_ckpt_secs = time.time()
                        LOGGER.debug(
                            "SAVING MODEL - CAUSE: DURATION - %0.2f min", dur)
                        # checkpoint.save(ckpt_prefix)
                        saver.save_model(
                            train_steps=step_counters["train"],
                            model_or_replicas=model,
                            optimizer=optimizer,
                        )

        ############################################################################
        # Post Training Cleanup
        ############################################################################
        for writer in writers.values():
            writer.close()