def save_checkpoint(state, is_best, filename='*_checkpoint.pth.tar'): work_dir = os.path.basename(os.path.dirname(os.path.realpath(__file__))) save_dir = os.path.join('./checkpoints/', work_dir) cine(save_dir) filename = filename.replace('*', time_string) filename = os.path.join(save_dir, filename) torch.save(state, filename) if is_best: shutil.copyfile(filename, os.path.join(save_dir, time_string+'_model_best.pth.tar'))
def save_checkpoint(state, filename='*_checkpoint.pth.tar'): work_dir = os.path.basename(os.path.dirname(os.path.realpath(__file__))) save_dir = os.path.join('/mv_users/peiguo/checkpoints/', work_dir) cine(save_dir) symlink = './checkpoints' if not os.path.exists(symlink): os.symlink(save_dir, symlink) filename = filename.replace('*', time_string) filename = os.path.join(save_dir, filename) torch.save(state, filename)
help='evaluate model on validation set') parser.add_argument('--pretrained', dest='pretrained', action='store_true', help='use pre-trained model') parser.add_argument('--lr_decay', default='50', type=int, help='lr decay frequency') parser.add_argument('--crop_size', default='256', type=int, help='size of cropped image') parser.add_argument('--visualize', dest='visualize', action='store_true', help='visualize middle output') parser.add_argument('--nparts', default='15', type=int, help='number of keypoints') best_prec1 = 0 time_string = datetime.now().strftime('%Y_%m_%d_%H_%M_%S') cine('logs') Tee('logs/cmd_log_{}'.format(time_string), 'w') unisize = 256 outsize = 64 def main(): global args, best_prec1 args = parser.parse_args() print(args) global fig, ax1, ax2, ax3, ax4 if args.visualize: plt.ion() plt.show() fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2,2)