import numpy as np import os import json import matplotlib.pyplot as plt if __name__ == '__main__': nepisodes = 500 lambda_param = 1 return_type = 'Retrace' datadir = 'data' if not os.path.exists(datadir): os.mkdir(datadir) print('collecting data ...') collect_dataset(datadir) print('estimating true Q function ...') with open(os.path.join(datadir, 'test_points.json'), 'r') as f: test_points = json.load(f) estimate_true_q(test_points, datadir, nepisodes=100) with open(os.path.join(datadir, 'test_points.json'), 'r') as f: test_points = json.load(f) data = np.load(os.path.join(datadir, 'dataset_0.npy')) true_q = np.load(os.path.join(datadir, 'true_q.npy')) value_function = ValueFunction() print('estimating key quantities ...') test_data = np.load(os.path.join(datadir, 'dataset_0.npy')) A, b, M_inv = estimate_key_quantities(value_function, test_data, lambda_param, return_type)
import cv2 from WebcamCapture import WebcamCapture from FaceDetection import FaceDetection from ProcessImage import ProcessImage from utils import collect_dataset images, labels, label_dic = collect_dataset() rec_lbph = cv2.face.LBPHFaceRecognizer_create() rec_lbph.train(images, labels) camera = WebcamCapture() face_detector = FaceDetection() image_processor = ProcessImage() images, labels, label_dic = collect_dataset() rec_lbph = cv2.face.LBPHFaceRecognizer_create() rec_lbph.train(images, labels) rec_eigen = cv2.face.EigenFaceRecognizer_create() rec_eigen.train(images, labels) rec_fisher = cv2.face.FisherFaceRecognizer_create() rec_fisher.train(images, labels) collector = cv2.face.StandardCollector_create() frame = camera.get_feed() faces_area = face_detector.detect_face(frame) if len(faces_area):
self.models[i][0]) + self.models[i][1] prediction_result[inds] = np.argmax(predict_values, axis=1) #print (prediction_result.shape) #print (prediction_result) return prediction_result if __name__ == "__main__": from actor_wrapper import Actor_LIME from utils import collect_dataset from sklearn.model_selection import train_test_split actor = Actor_LIME( nn_model="../pensieve_test/models/pretrain_linear_reward.ckpt") dataset = collect_dataset().values labels = np.argmax(actor.predict(dataset), axis=1) X_train, X_test, y_train, y_test = train_test_split(dataset, labels, test_size=0.2) print(X_train.shape, X_test.shape, y_train.shape, y_test.shape) with open("./lime_extended_performance.csv", "w") as FILE: for j in range(100): X_train, X_test, y_train, y_test = train_test_split(dataset, labels, test_size=0.2) for i in range(1, 50): lime_model = LIMESimpleModel(cluster_num=i)