def test_suggested_cased_always_qualified_column_names(completer): text = 'SELECT from users' position = len('SELECT ') cols = [column(c) for c in cased_users_col_names] result = result_set(completer, text, position) assert result == set(cased_funcs + cols + testdata.builtin_functions() + testdata.keywords())
def test_columns_before_keywords(completer): text = 'SELECT * FROM orders WHERE s' completions = get_result(completer, text) col = column('status', -1) kw = keyword('SELECT', -1) assert completions.index(col) < completions.index(kw)
def test_suggested_cased_always_qualified_column_names( completer ): text = 'SELECT from users' position = len('SELECT ') cols = [column(c) for c in cased_users_col_names] result = result_set(completer, text, position) assert result == set(cased_funcs + cols + testdata.builtin_functions() + testdata.keywords())
def predict(self, x_data): y_hat_models = [] for model in self.models: y_hat_models.append((model.predict(x_data))) # make a predict with every model y_hat = [] for i in range(len(x_data)): # find the most frequency predict. (can not be equality due to odd number of # models) lst = column(y_hat_models, i) y_hat.append(max(set(lst), key=lst.count)) return y_hat
def adaboost(train, test, headers, fullTestData): ylabels = ['H', 'A', 'D']#Make predictions for each of the possible labels results = [] for y in ylabels: # print "Training for", y rootNode = Node(train)#Initialize first decision stump treeRootNode = buildTree(rootNode, y, headers) results.append(predict(test, rootNode.splits, y)) print "Now making predictions" prediction = [] for r in xrange(0,len(results[0])): temp = [zy for zy in column(results, r)] #Take the label with corresponding max value of alpha as final prediction prediction.append(ylabels[temp.index(max(temp))]) print "Now checking predictions" corr = 0 print "Home\tAway\tPrediction\tActual\tBookie" file = open("resultdata.csv", 'a') writer = csv.writer(file, quoting=csv.QUOTE_ALL) for p in xrange(0,len(prediction)): print '\a' writer.writerow([column(fullTestData,-2)[p], column(fullTestData,-1)[p], prediction[p], column(test,-2)[p], column(fullTestData,-4)[p]]) print [column(fullTestData,-2)[p], column(fullTestData,-1)[p], prediction[p], column(test,-2)[p], column(fullTestData,-4)[p]] if prediction[p] == column(test,-2)[p]: corr+=1 file.close() try: print str(float(corr)*100/len(prediction)), len(prediction) except ZeroDivisionError: print 0, len(prediction) print "done"
def test_join_using_suggests_columns_after_first_column(completer, text): result = result_set(completer, text) cols = [column(c) for c in metadata['tables']['USERS']] cols += [column(c) for c in metadata['tables']['ORDERS']] assert result == set(cols)
def test_suggest_columns_after_three_way_join(completer): text = '''SELECT * FROM users u1 INNER JOIN users u2 ON u1.id = u2.id INNER JOIN users u3 ON u2.id = u3.''' result = result_set(completer, text) assert (column('id') in result)
def test_no_column_qualification(text, completer): cols = [column(c) for c in cased_users_col_names] result = result_set(completer, text) assert result == set(cols)
cased_func_names = [ 'Custom_Fun', '_custom_fun', 'Custom_Func1', 'custom_func2', 'set_returning_func' ] cased_tbls = ['Users', 'Orders'] cased_views = ['User_Emails', 'Functions'] casing = (['SELECT', 'PUBLIC'] + cased_func_names + cased_tbls + cased_views + cased_users_col_names + cased_users2_col_names) # Lists for use in assertions cased_funcs = [ function(f) for f in ('Custom_Fun', '_custom_fun', 'Custom_Func1', 'custom_func2') ] + [function('set_returning_func')] cased_tbls = [table(t) for t in (cased_tbls + ['"Users"', '"select"'])] cased_rels = [view(t) for t in cased_views] + cased_funcs + cased_tbls cased_users_cols = [column(c) for c in cased_users_col_names] aliased_rels = [ table(t) for t in ('users u', '"Users" U', 'orders o', '"select" s') ] + [view('user_emails ue'), view('functions f')] + [ function(f) for f in ('_custom_fun() cf', 'custom_fun() cf', 'custom_func1() cf', 'custom_func2() cf') ] + [ function('set_returning_func(x := , y := ) srf', display='set_returning_func(x, y) srf') ] cased_aliased_rels = [ table(t) for t in ('Users U', '"Users" U', 'Orders O', '"select" s') ] + [view('User_Emails UE'), view('Functions F')] + [ function(f) for f in ('_custom_fun() cf', 'Custom_Fun() CF', 'Custom_Func1() CF', 'custom_func2() cf') ] + [
try:#Try and load serialized data with features extracted traindata = pickle.load( open( "traindata.p", "rb" ) ) headers = pickle.load( open( "headers.p", "rb" ) ) except:#Else now calculate feature data for every match and seralize it traindata, teamwise, matchwise, headers = trainOnAll(data) pickle.dump( traindata, open( "traindata.p", "wb" ) ) pickle.dump( teamwise, open( "teamwise.p", "wb" ) ) pickle.dump( matchwise, open( "matchwise.p", "wb" ) ) pickle.dump( headers, open( "headers.p", "wb" ) ) # normalize features in training data # If any feature has missing values (None) replace it with the average for x in xrange(len(traindata[0])-5): tmp = [t for t in column(traindata,x) if t != None] if len(tmp) == 0: avg = 0.0 else: avg = sum(tmp)/len(tmp) mn = min(tmp) mx = max(tmp) #Now normalize the values as (fx-fmin)/fmax for num, y in enumerate(column(traindata,x)): if traindata[num][x] == None: try: traindata[num][x] = (avg-mn)/(mx-mn) except ZeroDivisionError: traindata[num][x] = 0.0 else: try:
cased_func_names = [ 'Custom_Fun', '_custom_fun', 'Custom_Func1', 'custom_func2', 'set_returning_func' ] cased_tbls = ['Users', 'Orders'] cased_views = ['User_Emails', 'Functions'] casing = ( ['SELECT', 'PUBLIC'] + cased_func_names + cased_tbls + cased_views + cased_users_col_names + cased_users2_col_names ) # Lists for use in assertions cased_funcs = [ function(f) for f in ('Custom_Fun', '_custom_fun', 'Custom_Func1', 'custom_func2') ] + [function('set_returning_func')] cased_tbls = [table(t) for t in (cased_tbls + ['"Users"', '"select"'])] cased_rels = [view(t) for t in cased_views] + cased_funcs + cased_tbls cased_users_cols = [column(c) for c in cased_users_col_names] aliased_rels = [ table(t) for t in ('users u', '"Users" U', 'orders o', '"select" s') ] + [view('user_emails ue'), view('functions f')] + [ function(f) for f in ( '_custom_fun() cf', 'custom_fun() cf', 'custom_func1() cf', 'custom_func2() cf' ) ] + [function( 'set_returning_func(x := , y := ) srf', display='set_returning_func(x, y) srf' )] cased_aliased_rels = [ table(t) for t in ('Users U', '"Users" U', 'Orders O', '"select" s') ] + [view('User_Emails UE'), view('Functions F')] + [ function(f) for f in (
app.layout = html.Div( children=[ row([ html.H2( 'Visualizing common distributions', style={ 'textAlign': 'center', 'color': colors['text']}, )]), row([ column([ row([ html.Br(), html.Label('Set N:'), dcc.Input(id='set_n', value=10, type='number', min=0, step=1, size=1), ]), row([ html.Label('Set p:'), dcc.Input(id='set_p', value=0.5, type='number', min=0.0, max=1.0, step=0.05), ]) ], className='two columns'), column([ dcc.Graph( id='binomial_graph', config={ 'displaylogo': False, #dont show plotly logo 'modeBarButtonsToRemove': ['pan2d','lasso2d'], #dont show certain options in plotly menu }, ), ], className='eight columns'),