Пример #1
0
def validate(args, epoch, model, criterion, test_loader):
    global global_step

    logger.info('Test {}'.format(epoch))
    loss_meter = AverageMeter()
    angle_error_meter = AverageMeter()
    start = time.time()

    for step, (images, gazes) in enumerate(test_loader):
        if args.use_cuda:
            images = images.cuda()
            gazes = gazes.cuda()

        with torch.no_grad():
            outputs = model(images)
        loss = criterion(outputs, gazes)

        angle_error = compute_angle_error(outputs, gazes).mean()

        num = images.size(0)

        loss_meter.update(loss.item(), num)
        angle_error_meter.update(angle_error.item(), num)

        logger.info('Epoch {} Loss {:.4f} AngleError {:.2f}'.format(
            epoch, loss_meter.avg, angle_error_meter.avg))

        elapsed = time.time() - start
        logger.info('Elapsed {:.2f}'.format(elapsed))

        return angle_error_meter.avg
Пример #2
0
def test(val_loader, model, criterion, epoch):

    model.eval()
    # gaze_model.eval()
    batch_time = AverageMeter()
    data_time = AverageMeter()
    losses = AverageMeter()
    angle_error_Loss = AverageMeter()

    # switch to evaluate mode
    end = time.time()

    for i, (imFace, gaze) in enumerate(val_loader):

        # measure data loading time
        data_time.update(time.time() - end)

        imFace = imFace.cuda(async=True)
        gaze = gaze.cuda(async=True)

        imFace = torch.autograd.Variable(imFace)
        gaze = torch.autograd.Variable(gaze)

        with torch.no_grad():
            # compute output
            output = model(imFace)
            # output = gaze_model(feat)

        loss = criterion(output, gaze)
        angle_error = compute_angle_error(gaze, output).mean()

        losses.update(loss.item(), imFace.size(0))
        angle_error_Loss.update(angle_error.item(), imFace.size(0))

        # measure elapsed time
        batch_time.update(time.time() - end)
        end = time.time()

        print(
            'Epoch (val): [{0}][{1}/{2}]\t'
            'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
            'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
            'angle_error_Loss {angle_error_Loss.val: .4f} ({angle_error_Loss.avg: .4f})'
            .format(epoch,
                    i,
                    len(val_loader),
                    batch_time=batch_time,
                    loss=losses,
                    angle_error_Loss=angle_error_Loss))

    return angle_error_Loss.avg
Пример #3
0
def train(args, epoch, model, optimizer, criterion, train_loader):
    global global_step

    logger.info('Train {}'.format(epoch))
    model.train()

    loss_meter = AverageMeter()
    angle_error_meter = AverageMeter()
    start = time.time()

    for step, (images, gazes) in enumerate(train_loader):
        global_step += 1

        if args.use_cuda:
            images = images.cuda()
            gazes = gazes.cuda()

        # zero optimizer's gradient
        optimizer.zero_grad()

        outputs = model(images)
        loss = criterion(outputs, gazes)
        loss.backward()

        optimizer.step()
        angle_error = compute_angle_error(outputs, gazes).mean()

        num = images.size(0)
        loss_meter.update(loss.item(), num)
        angle_error_meter.update(angle_error.item(), num)

        print("Epoch {} Step {}/{} Loss {:.4f} Angle Error {:.2f}".format(
            epoch, step, len(train_loader), loss_meter.avg,
            angle_error_meter.avg))

        if step % 10 == 0:
            logger.info('Epoch {} Step {}/{}\t'
                        'Loss {:.4f} ({:.4f})\t'
                        'Angle Error {:.2f} ({:.2f})'.format(
                            epoch,
                            step,
                            len(train_loader),
                            loss_meter.val,
                            loss_meter.avg,
                            angle_error_meter.val,
                            angle_error_meter.avg,
                        ))
            print("Gaze[0:2]: ", gazes[0:2])
            print("Output[0:2]: ", outputs[0:2])
        elapsed = time.time() - start
        logger.info('Elapsed {:.2f}'.format(elapsed))
Пример #4
0
def train(train_loader, model, criterion, optimizer, epoch, k):

    batch_time = AverageMeter()
    data_time = AverageMeter()
    losses = AverageMeter()
    angle_error_meter = AverageMeter()

    # switch to train mode
    model.train()
    # gaze_model.train()

    end = time.time()

    for i, (imFace, gaze) in enumerate(train_loader):

        data_time.update(time.time() - end)

        imFace = imFace.cuda(async=True)
        gaze = gaze.cuda(async=True)

        imFace = torch.autograd.Variable(imFace, requires_grad=True)
        gaze = torch.autograd.Variable(gaze, requires_grad=True)

        # compute output
        model.zero_grad()
        # gaze_model.zero_grad()

        #Pass the image to VGG-Face and Gaze output model
        # features = feature_extractor(imFace)
        output = model(imFace)

        #compute loss
        loss = criterion(output, gaze)

        #computer angle error
        angle_error = compute_angle_error(gaze, output).mean()

        losses.update(loss.item(), imFace.size(0))
        angle_error_meter.update(angle_error.item(), imFace.size(0))

        # compute gradient and do SGD step
        loss.backward()
        optimizer.step()

        # measure elapsed time
        batch_time.update(time.time() - end)
        end = time.time()

        print(
            'Subject %d' % (k), 'Epoch (train): [{0}][{1}/{2}]\t'
            'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
            'Data {data_time.val:.3f} ({data_time.avg:.3f})\t'
            'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
            'Angle_Loss {angle_error_meter.val: .4f} ({angle_error_meter.avg:.4f})'
            .format(epoch,
                    i,
                    len(train_loader),
                    batch_time=batch_time,
                    data_time=data_time,
                    loss=losses,
                    angle_error_meter=angle_error_meter))
    return
Пример #5
0
            prediction = model(input)
            mse = criterion(prediction, target)

            predictions[i*test_batch_size:(i+1)*test_batch_size, :] = prediction.cpu().numpy()
            targets[i*test_batch_size:(i+1)*test_batch_size, :] = target.cpu().numpy()
            
            avg_error += mse.item()
        
    print("Distance error: {:.4f}".format(avg_error / len(testing_data_loader)))
    return mse, predictions, targets

# run test and visualize
error, predictions, targets = validate()
angle_errors = np.zeros((len(dataset), 2)) # horizontal and vertical error
for i,(predict, target) in enumerate(zip(predictions, targets)):
    angle_errors[i] = compute_angle_error(predict, target)
print('Angle error: ', np.mean(angle_errors))
print('Horizontal angle error: ', np.mean(angle_errors[:,0]))
print('Vertical angle error: ', np.mean(angle_errors[:,1]))
num_spot = 4
visualize_2d(predictions, targets, num_spot)
#visualize_3d(predictions, targets)
#draw_error(targets, np.mean(angle_errors, 1))

# def checkpoint(epoch, error):
#     state = OrderedDict([
#         ('state_dict', model.state_dict()),
#         ('optimizer', optimizer.state_dict()),
#         ('epoch', epoch),
#         ('error', error),
#     ])
Пример #6
0
    time.strftime("%a, %d %b %Y %H:%M:%S ", time.gmtime())))

for epoch in range(args.epochs):
    for batch_idx, (imgs, gt) in enumerate(train_loader):

        imgs = imgs.float().cuda()
        gt = gt.cuda()

        optimizer.zero_grad()

        outputs = model(imgs)
        loss = loss_fn(outputs, gt)
        loss.backward()

        optimizer.step()
        angle_error = utils.compute_angle_error(outputs, gt).mean()

        if batch_idx % 100 == 0:
            s = ('Epoch {} Step {}/{} '
                 'Loss: {:.4f} '
                 'AngleError: {:.2f}'.format(
                     epoch,
                     batch_idx,
                     len(train_loader),
                     loss.item(),
                     angle_error.item(),
                 ))
            print(s)
            with open(args.log_path, 'a') as f:
                f.write('{}\n'.format(s))