Пример #1
0
CX_rois = ['PB','NO','FB','EB','AB(L)','AB(R)']
#CX_rois = ['PB']
empty_rois = []

h_results = {'h':[],'h_randwire':[],'h_randweight':[]}

#hpy = lambda x: np.random.randn()
reldir = '../'

for roi in CX_rois:
    try:
        print(roi)
        path = os.path.join(reldir,conf.results_dir,'CX_study','roi='+roi+'.txt')
        if roi not in empty_rois and not os.path.exists(path):
            n,conn = fetch_adjacency(adjpath=os.path.join(reldir,conf.datasets_dir,'noncropped_traced_'+roi))
            nlist,adj = conn2adj(conn)
            print('adj size =',adj.shape,'non-zero elements =',conn.shape[0])
            
            #fh
            h = hpy(adj)
            
            #fh random rewiring
            N = adj.shape[0]
            perm = np.random.permutation(N)
            h_randwire = hpy(adj[:, perm])
            
            #fh random weight shuffling
            nonz = np.nonzero(adj)
            weights = adj[nonz]
            np.random.shuffle(weights)
            adj[nonz] = weights
Пример #2
0
#hpy = lambda x: np.random.randn()
reldir = '../'

for roi in CX_rois:
    try:
        if roi not in empty_rois:
            n, conn = fetch_adjacency(adjpath=os.path.join(
                reldir, conf.datasets_dir, 'noncropped_traced_' + roi))
            for th in ths:
                print(th, roi)
                path = os.path.join(reldir, conf.results_dir, 'CX_study_th',
                                    f'th={th};roi={roi}.txt')
                if not os.path.exists(path):
                    temp = conn[conn['weight'] > th]
                    nlist, adj = conn2adj(temp)
                    if temp.shape[0] > 0:
                        print('adj size =', adj.shape, 'non-zero elements =',
                              temp.shape[0])

                        #fh
                        h = hnx(adj)

                        #fh random rewiring
                        #             N = adj.shape[0]
                        #             temp = []
                        #             for i in range(20):
                        #                 perm = np.random.permutation(N)
                        #                 temp += [hnx(adj[:,perm])]

                        #             h_randwire_mean,h_randwire_std = np.mean(temp),np.std(temp)
Пример #3
0
neur_CX_split,conn_CX_split = {}, {}
for roi in CX_rois:
    n,conn = fetch_adjacency(adjpath=os.path.join(reldir,conf.datasets_dir,'noncropped_traced_'+roi))
    neur_CX_split[roi],conn_CX_split[roi] = n,conn

#main loop
for roi in CX_rois:
    n,conn = neur_CX_split[roi], conn_CX_split[roi]
    for th in ths:
        print(th,roi)
        path = os.path.join(reldir,conf.results_dir,expname,f'th={th};roi={roi}.txt')
        if not os.path.exists(path):

            conn1 = restrict_th(conn,th)
            conn_out = restrict_max_comp(conn1)
            
            size_maxcomp = len(find_max_comp_neurons(conn_out))
            nlist,adj = conn2adj(conn_out)

            if conn_out.shape[0]>0:

                print('adj size =',adj.shape,'non-zero elements =',conn_out.shape[0])

                #fh
                h = hnx(adj)
                print(f'th={th};h={h};size(max_comp)={size_maxcomp}')
                with open(path,'w') as f:
                    #f.write(f'{h} {h_randwire_mean} {h_randwire_std} {h_randweight_mean} {h_randweight_std}')
                    f.write(f'{h} {th} {size_maxcomp}')
        else:
            print(roi,': skipping, result exists')