def inception_block_3b(X): X_3x3 = utils.conv2d_bn(X, layer='inception_5b_3x3', cv1_out=96, cv1_filter=(1, 1), cv2_out=384, cv2_filter=(3, 3), cv2_strides=(1, 1), padding=(1, 1)) X_pool = MaxPooling2D(pool_size=3, strides=2, data_format='channels_first')(X) X_pool = utils.conv2d_bn(X_pool, layer='inception_5b_pool', cv1_out=96, cv1_filter=(1, 1)) X_pool = ZeroPadding2D(padding=(1, 1), data_format='channels_first')(X_pool) X_1x1 = utils.conv2d_bn(X, layer='inception_5b_1x1', cv1_out=256, cv1_filter=(1, 1)) inception = concatenate([X_3x3, X_pool, X_1x1], axis=1) return inception
def inception_block_2a(X): X_3x3 = utils.conv2d_bn(X, layer='inception_4a_3x3', cv1_out=96, cv1_filter=(1, 1), cv2_out=192, cv2_filter=(3, 3), cv2_strides=(1, 1), padding=(1, 1)) X_5x5 = utils.conv2d_bn(X, layer='inception_4a_5x5', cv1_out=32, cv1_filter=(1, 1), cv2_out=64, cv2_filter=(5, 5), cv2_strides=(1, 1), padding=(2, 2)) X_pool = AveragePooling2D(pool_size=(3, 3), strides=(3, 3), data_format='channels_first')(X) X_pool = utils.conv2d_bn(X_pool, layer='inception_4a_pool', cv1_out=128, cv1_filter=(1, 1), padding=(2, 2)) X_1x1 = utils.conv2d_bn(X, layer='inception_4a_1x1', cv1_out=256, cv1_filter=(1, 1)) inception = concatenate([X_3x3, X_5x5, X_pool, X_1x1], axis=1) return inception
def inception_block_2b(X): #inception4e X_3x3 = utils.conv2d_bn(X, layer='inception_4e_3x3', cv1_out=160, cv1_filter=(1, 1), cv2_out=256, cv2_filter=(3, 3), cv2_strides=(2, 2), padding=(1, 1)) X_5x5 = utils.conv2d_bn(X, layer='inception_4e_5x5', cv1_out=64, cv1_filter=(1, 1), cv2_out=128, cv2_filter=(5, 5), cv2_strides=(2, 2), padding=(2, 2)) X_pool = MaxPooling2D(pool_size=3, strides=2, data_format='channels_first')(X) X_pool = ZeroPadding2D(padding=((0, 1), (0, 1)), data_format='channels_first')(X_pool) inception = concatenate([X_3x3, X_5x5, X_pool], axis=1) return inception
def inception_block_3a(X): X_3x3 = utils.conv2d_bn(X, layer='inception_5a_3x3', cv1_out=96, cv1_filter=(1, 1), cv2_out=384, cv2_filter=(3, 3), cv2_strides=(1, 1), padding=(1, 1)) X_pool = AveragePooling2D(pool_size=(3, 3), strides=1, data_format='channels_first')(X) X_pool = utils.conv2d_bn(X_pool, layer='inception_5a_pool', cv1_out=96, cv1_filter=(1, 1), padding=(1, 1)) X_1x1 = utils.conv2d_bn(X, layer='inception_5a_1x1', cv1_out=256, cv1_filter=(1, 1)) inception = concatenate([X_1x1, X_3x3, X_pool], axis=1) return inception
def inception_block_5b(x): inception_5b_3x3 = utils.conv2d_bn(x, layer='inception_5b_3x3', cv1_out=96, cv1_filter=(1, 1), cv2_out=384, cv2_filter=(3, 3), cv2_strides=(1, 1), padding=(1, 1)) inception_5b_pool = MaxPooling2D(pool_size=3, strides=2)(x) inception_5b_pool = utils.conv2d_bn(inception_5b_pool, layer='inception_5b_pool', cv1_out=96, cv1_filter=(1, 1)) inception_5b_pool = ZeroPadding2D(padding=(1, 1))(inception_5b_pool) inception_5b_1x1 = utils.conv2d_bn(x, layer='inception_5b_1x1', cv1_out=256, cv1_filter=(1, 1)) inception_5b = concatenate( [inception_5b_3x3, inception_5b_pool, inception_5b_1x1], axis=3) return inception_5b
def inception_block_5a(x): inception_5a_3x3 = utils.conv2d_bn(x, layer='inception_5a_3x3', cv1_out=96, cv1_filter=(1, 1), cv2_out=384, cv2_filter=(3, 3), cv2_strides=(1, 1), padding=(1, 1)) inception_5a_pool = Lambda(lambda x: x**2, name='power2_5a')(x) inception_5a_pool = AveragePooling2D(pool_size=(3, 3), strides=(3, 3))(inception_5a_pool) inception_5a_pool = Lambda(lambda x: x * 9, name='mult9_5a')(inception_5a_pool) inception_5a_pool = Lambda(lambda x: K.sqrt(x), name='sqrt_5a')(inception_5a_pool) inception_5a_pool = utils.conv2d_bn(inception_5a_pool, layer='inception_5a_pool', cv1_out=96, cv1_filter=(1, 1), padding=(1, 1)) inception_5a_1x1 = utils.conv2d_bn(x, layer='inception_5a_1x1', cv1_out=256, cv1_filter=(1, 1)) inception_5a = concatenate( [inception_5a_3x3, inception_5a_pool, inception_5a_1x1], axis=3) return inception_5a
def inception_block_4e(x): inception_4e_3x3 = utils.conv2d_bn(x, layer='inception_4e_3x3', cv1_out=160, cv1_filter=(1, 1), cv2_out=256, cv2_filter=(3, 3), cv2_strides=(2, 2), padding=(1, 1)) inception_4e_5x5 = utils.conv2d_bn(x, layer='inception_4e_5x5', cv1_out=64, cv1_filter=(1, 1), cv2_out=128, cv2_filter=(5, 5), cv2_strides=(2, 2), padding=(2, 2)) inception_4e_pool = MaxPooling2D(pool_size=3, strides=2)(x) inception_4e_pool = ZeroPadding2D(padding=((0, 1), (0, 1)))(inception_4e_pool) inception_4e = concatenate( [inception_4e_3x3, inception_4e_5x5, inception_4e_pool], axis=3) return inception_4e
def inception_block_2a(x): #inception 4a #inception_4a_3x3 = utils.conv2d_bn(inception_3c, inception_4a_3x3 = utils.conv2d_bn(x, layer='inception_4a_3x3', cv1_out=96, cv1_filter=(1, 1), cv2_out=192, cv2_filter=(3, 3), cv2_strides=(1, 1), padding=(1, 1)) #inception_4a_5x5 = utils.conv2d_bn(inception_3c, inception_4a_5x5 = utils.conv2d_bn(x, layer='inception_4a_5x5', cv1_out=32, cv1_filter=(1, 1), cv2_out=64, cv2_filter=(5, 5), cv2_strides=(1, 1), padding=(2, 2)) #inception_4a_pool = Lambda(lambda x: x**2, name='power2_4a')(inception_3c) inception_4a_pool = Lambda(lambda x: x**2, name='power2_4a')(x) inception_4a_pool = AveragePooling2D(pool_size=(3, 3), strides=(3, 3))(inception_4a_pool) inception_4a_pool = Lambda(lambda x: x * 9, name='mult9_4a')(inception_4a_pool) inception_4a_pool = Lambda(lambda x: K.sqrt(x), name='sqrt_4a')(inception_4a_pool) inception_4a_pool = utils.conv2d_bn(inception_4a_pool, layer='inception_4a_pool', cv1_out=128, cv1_filter=(1, 1), padding=(2, 2)) #inception_4a_1x1 = utils.conv2d_bn(inception_3c, inception_4a_1x1 = utils.conv2d_bn(x, layer='inception_4a_1x1', cv1_out=256, cv1_filter=(1, 1)) inception_4a = concatenate([ inception_4a_3x3, inception_4a_5x5, inception_4a_pool, inception_4a_1x1 ], axis=3) return inception_4a
def inception_block_1b(X): X_3x3 = utils.conv2d_bn(X, layer='inception_3b_3x3', cv1_out=96, cv1_filter=(1, 1), cv2_out=128, cv2_filter=(3, 3), padding=(1, 1)) X_5x5 = utils.conv2d_bn(X, layer='inception_3b_5x5', cv1_out=32, cv1_filter=(1, 1), cv2_out=64, cv2_filter=(5, 5), padding=(2, 2)) X_pool = AveragePooling2D(pool_size=(3, 3), strides=(3, 3), data_format='channels_first')(X) X_pool = Conv2D(64, (1, 1), data_format='channels_first', name='inception_3b_pool_conv')(X_pool) X_pool = BatchNormalization(axis=1, epsilon=0.00001, name='inception_3b_pool_bn')(X_pool) X_pool = Activation('relu')(X_pool) X_pool = ZeroPadding2D(padding=(4, 4), data_format='channels_first')(X_pool) X_1x1 = Conv2D(64, (1, 1), data_format='channels_first', name='inception_3b_1x1_conv')(X) X_1x1 = BatchNormalization(axis=1, epsilon=0.00001, name='inception_3b_1x1_bn')(X_1x1) X_1x1 = Activation('relu')(X_1x1) inception = concatenate([X_3x3, X_5x5, X_pool, X_1x1], axis=1) return inception
def create_model(): myInput = Input(shape=(150, 150, 3)) x = ZeroPadding2D(padding=(3, 3), input_shape=(96, 96, 3))(myInput) x = Conv2D(64, (7, 7), strides=(2, 2), name='conv1')(x) x = BatchNormalization(axis=3, epsilon=0.00001, name='bn1')(x) x = Activation('relu')(x) x = ZeroPadding2D(padding=(1, 1))(x) x = MaxPooling2D(pool_size=3, strides=2)(x) x = Lambda(LRN2D, name='lrn_1')(x) x = Conv2D(64, (1, 1), name='conv2')(x) x = BatchNormalization(axis=3, epsilon=0.00001, name='bn2')(x) x = Activation('relu')(x) x = ZeroPadding2D(padding=(1, 1))(x) x = Conv2D(192, (3, 3), name='conv3')(x) x = BatchNormalization(axis=3, epsilon=0.00001, name='bn3')(x) x = Activation('relu')(x) x = Lambda(LRN2D, name='lrn_2')(x) x = ZeroPadding2D(padding=(1, 1))(x) x = MaxPooling2D(pool_size=3, strides=2)(x) # Inception3a inception_3a_3x3 = Conv2D(96, (1, 1), name='inception_3a_3x3_conv1')(x) inception_3a_3x3 = BatchNormalization( axis=3, epsilon=0.00001, name='inception_3a_3x3_bn1')(inception_3a_3x3) inception_3a_3x3 = Activation('relu')(inception_3a_3x3) inception_3a_3x3 = ZeroPadding2D(padding=(1, 1))(inception_3a_3x3) inception_3a_3x3 = Conv2D(128, (3, 3), name='inception_3a_3x3_conv2')(inception_3a_3x3) inception_3a_3x3 = BatchNormalization( axis=3, epsilon=0.00001, name='inception_3a_3x3_bn2')(inception_3a_3x3) inception_3a_3x3 = Activation('relu')(inception_3a_3x3) inception_3a_5x5 = Conv2D(16, (1, 1), name='inception_3a_5x5_conv1')(x) inception_3a_5x5 = BatchNormalization( axis=3, epsilon=0.00001, name='inception_3a_5x5_bn1')(inception_3a_5x5) inception_3a_5x5 = Activation('relu')(inception_3a_5x5) inception_3a_5x5 = ZeroPadding2D(padding=(2, 2))(inception_3a_5x5) inception_3a_5x5 = Conv2D(32, (5, 5), name='inception_3a_5x5_conv2')(inception_3a_5x5) inception_3a_5x5 = BatchNormalization( axis=3, epsilon=0.00001, name='inception_3a_5x5_bn2')(inception_3a_5x5) inception_3a_5x5 = Activation('relu')(inception_3a_5x5) inception_3a_pool = MaxPooling2D(pool_size=3, strides=2)(x) inception_3a_pool = Conv2D( 32, (1, 1), name='inception_3a_pool_conv')(inception_3a_pool) inception_3a_pool = BatchNormalization( axis=3, epsilon=0.00001, name='inception_3a_pool_bn')(inception_3a_pool) inception_3a_pool = Activation('relu')(inception_3a_pool) inception_3a_pool = ZeroPadding2D(padding=((3, 4), (3, 4)))(inception_3a_pool) inception_3a_1x1 = Conv2D(64, (1, 1), name='inception_3a_1x1_conv')(x) inception_3a_1x1 = BatchNormalization( axis=3, epsilon=0.00001, name='inception_3a_1x1_bn')(inception_3a_1x1) inception_3a_1x1 = Activation('relu')(inception_3a_1x1) inception_3a = concatenate([ inception_3a_3x3, inception_3a_5x5, inception_3a_pool, inception_3a_1x1 ], axis=3) # Inception3b inception_3b_3x3 = Conv2D(96, (1, 1), name='inception_3b_3x3_conv1')(inception_3a) inception_3b_3x3 = BatchNormalization( axis=3, epsilon=0.00001, name='inception_3b_3x3_bn1')(inception_3b_3x3) inception_3b_3x3 = Activation('relu')(inception_3b_3x3) inception_3b_3x3 = ZeroPadding2D(padding=(1, 1))(inception_3b_3x3) inception_3b_3x3 = Conv2D(128, (3, 3), name='inception_3b_3x3_conv2')(inception_3b_3x3) inception_3b_3x3 = BatchNormalization( axis=3, epsilon=0.00001, name='inception_3b_3x3_bn2')(inception_3b_3x3) inception_3b_3x3 = Activation('relu')(inception_3b_3x3) inception_3b_5x5 = Conv2D(32, (1, 1), name='inception_3b_5x5_conv1')(inception_3a) inception_3b_5x5 = BatchNormalization( axis=3, epsilon=0.00001, name='inception_3b_5x5_bn1')(inception_3b_5x5) inception_3b_5x5 = Activation('relu')(inception_3b_5x5) inception_3b_5x5 = ZeroPadding2D(padding=(2, 2))(inception_3b_5x5) inception_3b_5x5 = Conv2D(64, (5, 5), name='inception_3b_5x5_conv2')(inception_3b_5x5) inception_3b_5x5 = BatchNormalization( axis=3, epsilon=0.00001, name='inception_3b_5x5_bn2')(inception_3b_5x5) inception_3b_5x5 = Activation('relu')(inception_3b_5x5) inception_3b_pool = AveragePooling2D(pool_size=(3, 3), strides=(3, 3))(inception_3a) inception_3b_pool = Conv2D( 64, (1, 1), name='inception_3b_pool_conv')(inception_3b_pool) inception_3b_pool = BatchNormalization( axis=3, epsilon=0.00001, name='inception_3b_pool_bn')(inception_3b_pool) inception_3b_pool = Activation('relu')(inception_3b_pool) inception_3b_pool = ZeroPadding2D(padding=(4, 4))(inception_3b_pool) inception_3b_1x1 = Conv2D(64, (1, 1), name='inception_3b_1x1_conv')(inception_3a) inception_3b_1x1 = BatchNormalization( axis=3, epsilon=0.00001, name='inception_3b_1x1_bn')(inception_3b_1x1) inception_3b_1x1 = Activation('relu')(inception_3b_1x1) inception_3b = concatenate([ inception_3b_3x3, inception_3b_5x5, inception_3b_pool, inception_3b_1x1 ], axis=3) # Inception3c inception_3c_3x3 = utils.conv2d_bn(inception_3b, layer='inception_3c_3x3', cv1_out=128, cv1_filter=(1, 1), cv2_out=256, cv2_filter=(3, 3), cv2_strides=(2, 2), padding=(1, 1)) inception_3c_5x5 = utils.conv2d_bn(inception_3b, layer='inception_3c_5x5', cv1_out=32, cv1_filter=(1, 1), cv2_out=64, cv2_filter=(5, 5), cv2_strides=(2, 2), padding=(2, 2)) inception_3c_pool = MaxPooling2D(pool_size=3, strides=2)(inception_3b) inception_3c_pool = ZeroPadding2D(padding=((0, 1), (0, 1)))(inception_3c_pool) inception_3c = concatenate( [inception_3c_3x3, inception_3c_5x5, inception_3c_pool], axis=3) #inception 4a inception_4a_3x3 = utils.conv2d_bn(inception_3c, layer='inception_4a_3x3', cv1_out=96, cv1_filter=(1, 1), cv2_out=192, cv2_filter=(3, 3), cv2_strides=(1, 1), padding=(1, 1)) inception_4a_5x5 = utils.conv2d_bn(inception_3c, layer='inception_4a_5x5', cv1_out=32, cv1_filter=(1, 1), cv2_out=64, cv2_filter=(5, 5), cv2_strides=(1, 1), padding=(2, 2)) inception_4a_pool = AveragePooling2D(pool_size=(3, 3), strides=(3, 3))(inception_3c) inception_4a_pool = utils.conv2d_bn(inception_4a_pool, layer='inception_4a_pool', cv1_out=128, cv1_filter=(1, 1), padding=(2, 2)) inception_4a_1x1 = utils.conv2d_bn(inception_3c, layer='inception_4a_1x1', cv1_out=256, cv1_filter=(1, 1)) inception_4a = concatenate([ inception_4a_3x3, inception_4a_5x5, inception_4a_pool, inception_4a_1x1 ], axis=3) #inception4e inception_4e_3x3 = utils.conv2d_bn(inception_4a, layer='inception_4e_3x3', cv1_out=160, cv1_filter=(1, 1), cv2_out=256, cv2_filter=(3, 3), cv2_strides=(2, 2), padding=(1, 1)) inception_4e_5x5 = utils.conv2d_bn(inception_4a, layer='inception_4e_5x5', cv1_out=64, cv1_filter=(1, 1), cv2_out=128, cv2_filter=(5, 5), cv2_strides=(2, 2), padding=(2, 2)) inception_4e_pool = MaxPooling2D(pool_size=3, strides=2)(inception_4a) inception_4e_pool = ZeroPadding2D(padding=((0, 1), (0, 1)))(inception_4e_pool) inception_4e = concatenate( [inception_4e_3x3, inception_4e_5x5, inception_4e_pool], axis=3) #inception5a inception_5a_3x3 = utils.conv2d_bn(inception_4e, layer='inception_5a_3x3', cv1_out=96, cv1_filter=(1, 1), cv2_out=384, cv2_filter=(3, 3), cv2_strides=(1, 1), padding=(1, 1)) inception_5a_pool = AveragePooling2D(pool_size=(3, 3), strides=(3, 3))(inception_4e) inception_5a_pool = utils.conv2d_bn(inception_5a_pool, layer='inception_5a_pool', cv1_out=96, cv1_filter=(1, 1), padding=(1, 1)) inception_5a_1x1 = utils.conv2d_bn(inception_4e, layer='inception_5a_1x1', cv1_out=256, cv1_filter=(1, 1)) inception_5a = concatenate( [inception_5a_3x3, inception_5a_pool, inception_5a_1x1], axis=3) #inception_5b inception_5b_3x3 = utils.conv2d_bn(inception_5a, layer='inception_5b_3x3', cv1_out=96, cv1_filter=(1, 1), cv2_out=384, cv2_filter=(3, 3), cv2_strides=(1, 1), padding=(1, 1)) inception_5b_pool = MaxPooling2D(pool_size=3, strides=2)(inception_5a) inception_5b_pool = utils.conv2d_bn(inception_5b_pool, layer='inception_5b_pool', cv1_out=96, cv1_filter=(1, 1)) inception_5b_pool = ZeroPadding2D(padding=(1, 1))(inception_5b_pool) inception_5b_1x1 = utils.conv2d_bn(inception_5a, layer='inception_5b_1x1', cv1_out=256, cv1_filter=(1, 1)) inception_5b = concatenate( [inception_5b_3x3, inception_5b_pool, inception_5b_1x1], axis=3) av_pool = AveragePooling2D(pool_size=(3, 3), strides=(1, 1))(inception_5b) reshape_layer = Flatten()(av_pool) dense_layer = Dense(128, name='dense_layer')(reshape_layer) norm_layer = Lambda(lambda x: K.l2_normalize(x, axis=1), name='norm_layer')(dense_layer) return Model(inputs=[myInput], outputs=norm_layer)
inception_3b_1x1 = Conv2D(64, (1, 1), name='inception_3b_1x1_conv')(inception_3a) inception_3b_1x1 = BatchNormalization( axis=3, epsilon=0.00001, name='inception_3b_1x1_bn')(inception_3b_1x1) inception_3b_1x1 = Activation('relu')(inception_3b_1x1) inception_3b = concatenate( [inception_3b_3x3, inception_3b_5x5, inception_3b_pool, inception_3b_1x1], axis=3) # Inception3c inception_3c_3x3 = utils.conv2d_bn(inception_3b, layer='inception_3c_3x3', cv1_out=128, cv1_filter=(1, 1), cv2_out=256, cv2_filter=(3, 3), cv2_strides=(2, 2), padding=(1, 1)) inception_3c_5x5 = utils.conv2d_bn(inception_3b, layer='inception_3c_5x5', cv1_out=32, cv1_filter=(1, 1), cv2_out=64, cv2_filter=(5, 5), cv2_strides=(2, 2), padding=(2, 2)) inception_3c_pool = MaxPooling2D(pool_size=3, strides=2)(inception_3b) inception_3c_pool = ZeroPadding2D(padding=((0, 1), (0, 1)))(inception_3c_pool)
def create_model(): myInput = Input(shape=(96, 96, 3)) x = ZeroPadding2D(padding=(3, 3), input_shape=(96, 96, 3))(myInput) x = Conv2D(64, (7, 7), strides=(2, 2), name='conv1')(x) x = BatchNormalization(axis=3, epsilon=0.00001, name='bn1')(x) x = Activation('relu')(x) x = ZeroPadding2D(padding=(1, 1))(x) x = MaxPooling2D(pool_size=3, strides=2)(x) x = Lambda(LRN2D, name='lrn_1')(x) x = Conv2D(64, (1, 1), name='conv2')(x) x = BatchNormalization(axis=3, epsilon=0.00001, name='bn2')(x) x = Activation('relu')(x) x = ZeroPadding2D(padding=(1, 1))(x) x = Conv2D(192, (3, 3), name='conv3')(x) x = BatchNormalization(axis=3, epsilon=0.00001, name='bn3')(x) x = Activation('relu')(x) x = Lambda(LRN2D, name='lrn_2')(x) x = ZeroPadding2D(padding=(1, 1))(x) x = MaxPooling2D(pool_size=3, strides=2)(x) # Inception3a inception_3a_3x3 = Conv2D(96, (1, 1), name='inception_3a_3x3_conv1')(x) inception_3a_3x3 = BatchNormalization(axis=3, epsilon=0.00001, name='inception_3a_3x3_bn1')(inception_3a_3x3) inception_3a_3x3 = Activation('relu')(inception_3a_3x3) inception_3a_3x3 = ZeroPadding2D(padding=(1, 1))(inception_3a_3x3) inception_3a_3x3 = Conv2D(128, (3, 3), name='inception_3a_3x3_conv2')(inception_3a_3x3) inception_3a_3x3 = BatchNormalization(axis=3, epsilon=0.00001, name='inception_3a_3x3_bn2')(inception_3a_3x3) inception_3a_3x3 = Activation('relu')(inception_3a_3x3) inception_3a_5x5 = Conv2D(16, (1, 1), name='inception_3a_5x5_conv1')(x) inception_3a_5x5 = BatchNormalization(axis=3, epsilon=0.00001, name='inception_3a_5x5_bn1')(inception_3a_5x5) inception_3a_5x5 = Activation('relu')(inception_3a_5x5) inception_3a_5x5 = ZeroPadding2D(padding=(2, 2))(inception_3a_5x5) inception_3a_5x5 = Conv2D(32, (5, 5), name='inception_3a_5x5_conv2')(inception_3a_5x5) inception_3a_5x5 = BatchNormalization(axis=3, epsilon=0.00001, name='inception_3a_5x5_bn2')(inception_3a_5x5) inception_3a_5x5 = Activation('relu')(inception_3a_5x5) inception_3a_pool = MaxPooling2D(pool_size=3, strides=2)(x) inception_3a_pool = Conv2D(32, (1, 1), name='inception_3a_pool_conv')(inception_3a_pool) inception_3a_pool = BatchNormalization(axis=3, epsilon=0.00001, name='inception_3a_pool_bn')(inception_3a_pool) inception_3a_pool = Activation('relu')(inception_3a_pool) inception_3a_pool = ZeroPadding2D(padding=((3, 4), (3, 4)))(inception_3a_pool) inception_3a_1x1 = Conv2D(64, (1, 1), name='inception_3a_1x1_conv')(x) inception_3a_1x1 = BatchNormalization(axis=3, epsilon=0.00001, name='inception_3a_1x1_bn')(inception_3a_1x1) inception_3a_1x1 = Activation('relu')(inception_3a_1x1) inception_3a = concatenate([inception_3a_3x3, inception_3a_5x5, inception_3a_pool, inception_3a_1x1], axis=3) # Inception3b inception_3b_3x3 = Conv2D(96, (1, 1), name='inception_3b_3x3_conv1')(inception_3a) inception_3b_3x3 = BatchNormalization(axis=3, epsilon=0.00001, name='inception_3b_3x3_bn1')(inception_3b_3x3) inception_3b_3x3 = Activation('relu')(inception_3b_3x3) inception_3b_3x3 = ZeroPadding2D(padding=(1, 1))(inception_3b_3x3) inception_3b_3x3 = Conv2D(128, (3, 3), name='inception_3b_3x3_conv2')(inception_3b_3x3) inception_3b_3x3 = BatchNormalization(axis=3, epsilon=0.00001, name='inception_3b_3x3_bn2')(inception_3b_3x3) inception_3b_3x3 = Activation('relu')(inception_3b_3x3) inception_3b_5x5 = Conv2D(32, (1, 1), name='inception_3b_5x5_conv1')(inception_3a) inception_3b_5x5 = BatchNormalization(axis=3, epsilon=0.00001, name='inception_3b_5x5_bn1')(inception_3b_5x5) inception_3b_5x5 = Activation('relu')(inception_3b_5x5) inception_3b_5x5 = ZeroPadding2D(padding=(2, 2))(inception_3b_5x5) inception_3b_5x5 = Conv2D(64, (5, 5), name='inception_3b_5x5_conv2')(inception_3b_5x5) inception_3b_5x5 = BatchNormalization(axis=3, epsilon=0.00001, name='inception_3b_5x5_bn2')(inception_3b_5x5) inception_3b_5x5 = Activation('relu')(inception_3b_5x5) inception_3b_pool = AveragePooling2D(pool_size=(3, 3), strides=(3, 3))(inception_3a) inception_3b_pool = Conv2D(64, (1, 1), name='inception_3b_pool_conv')(inception_3b_pool) inception_3b_pool = BatchNormalization(axis=3, epsilon=0.00001, name='inception_3b_pool_bn')(inception_3b_pool) inception_3b_pool = Activation('relu')(inception_3b_pool) inception_3b_pool = ZeroPadding2D(padding=(4, 4))(inception_3b_pool) inception_3b_1x1 = Conv2D(64, (1, 1), name='inception_3b_1x1_conv')(inception_3a) inception_3b_1x1 = BatchNormalization(axis=3, epsilon=0.00001, name='inception_3b_1x1_bn')(inception_3b_1x1) inception_3b_1x1 = Activation('relu')(inception_3b_1x1) inception_3b = concatenate([inception_3b_3x3, inception_3b_5x5, inception_3b_pool, inception_3b_1x1], axis=3) # Inception3c inception_3c_3x3 = utils.conv2d_bn(inception_3b, layer='inception_3c_3x3', cv1_out=128, cv1_filter=(1, 1), cv2_out=256, cv2_filter=(3, 3), cv2_strides=(2, 2), padding=(1, 1)) inception_3c_5x5 = utils.conv2d_bn(inception_3b, layer='inception_3c_5x5', cv1_out=32, cv1_filter=(1, 1), cv2_out=64, cv2_filter=(5, 5), cv2_strides=(2, 2), padding=(2, 2)) inception_3c_pool = MaxPooling2D(pool_size=3, strides=2)(inception_3b) inception_3c_pool = ZeroPadding2D(padding=((0, 1), (0, 1)))(inception_3c_pool) inception_3c = concatenate([inception_3c_3x3, inception_3c_5x5, inception_3c_pool], axis=3) #inception 4a inception_4a_3x3 = utils.conv2d_bn(inception_3c, layer='inception_4a_3x3', cv1_out=96, cv1_filter=(1, 1), cv2_out=192, cv2_filter=(3, 3), cv2_strides=(1, 1), padding=(1, 1)) inception_4a_5x5 = utils.conv2d_bn(inception_3c, layer='inception_4a_5x5', cv1_out=32, cv1_filter=(1, 1), cv2_out=64, cv2_filter=(5, 5), cv2_strides=(1, 1), padding=(2, 2)) inception_4a_pool = AveragePooling2D(pool_size=(3, 3), strides=(3, 3))(inception_3c) inception_4a_pool = utils.conv2d_bn(inception_4a_pool, layer='inception_4a_pool', cv1_out=128, cv1_filter=(1, 1), padding=(2, 2)) inception_4a_1x1 = utils.conv2d_bn(inception_3c, layer='inception_4a_1x1', cv1_out=256, cv1_filter=(1, 1)) inception_4a = concatenate([inception_4a_3x3, inception_4a_5x5, inception_4a_pool, inception_4a_1x1], axis=3) #inception4e inception_4e_3x3 = utils.conv2d_bn(inception_4a, layer='inception_4e_3x3', cv1_out=160, cv1_filter=(1, 1), cv2_out=256, cv2_filter=(3, 3), cv2_strides=(2, 2), padding=(1, 1)) inception_4e_5x5 = utils.conv2d_bn(inception_4a, layer='inception_4e_5x5', cv1_out=64, cv1_filter=(1, 1), cv2_out=128, cv2_filter=(5, 5), cv2_strides=(2, 2), padding=(2, 2)) inception_4e_pool = MaxPooling2D(pool_size=3, strides=2)(inception_4a) inception_4e_pool = ZeroPadding2D(padding=((0, 1), (0, 1)))(inception_4e_pool) inception_4e = concatenate([inception_4e_3x3, inception_4e_5x5, inception_4e_pool], axis=3) #inception5a inception_5a_3x3 = utils.conv2d_bn(inception_4e, layer='inception_5a_3x3', cv1_out=96, cv1_filter=(1, 1), cv2_out=384, cv2_filter=(3, 3), cv2_strides=(1, 1), padding=(1, 1)) inception_5a_pool = AveragePooling2D(pool_size=(3, 3), strides=(3, 3))(inception_4e) inception_5a_pool = utils.conv2d_bn(inception_5a_pool, layer='inception_5a_pool', cv1_out=96, cv1_filter=(1, 1), padding=(1, 1)) inception_5a_1x1 = utils.conv2d_bn(inception_4e, layer='inception_5a_1x1', cv1_out=256, cv1_filter=(1, 1)) inception_5a = concatenate([inception_5a_3x3, inception_5a_pool, inception_5a_1x1], axis=3) #inception_5b inception_5b_3x3 = utils.conv2d_bn(inception_5a, layer='inception_5b_3x3', cv1_out=96, cv1_filter=(1, 1), cv2_out=384, cv2_filter=(3, 3), cv2_strides=(1, 1), padding=(1, 1)) inception_5b_pool = MaxPooling2D(pool_size=3, strides=2)(inception_5a) inception_5b_pool = utils.conv2d_bn(inception_5b_pool, layer='inception_5b_pool', cv1_out=96, cv1_filter=(1, 1)) inception_5b_pool = ZeroPadding2D(padding=(1, 1))(inception_5b_pool) inception_5b_1x1 = utils.conv2d_bn(inception_5a, layer='inception_5b_1x1', cv1_out=256, cv1_filter=(1, 1)) inception_5b = concatenate([inception_5b_3x3, inception_5b_pool, inception_5b_1x1], axis=3) av_pool = AveragePooling2D(pool_size=(3, 3), strides=(1, 1))(inception_5b) reshape_layer = Flatten()(av_pool) dense_layer = Dense(128, name='dense_layer')(reshape_layer) norm_layer = Lambda(lambda x: K.l2_normalize(x, axis=1), name='norm_layer')(dense_layer) return Model(inputs=[myInput], outputs=norm_layer)
def create_model(): myInput = Input(shape=(96, 96, 3)) # Thêm 3 hàng 3 cột vào kích thước của ma trận ảnh đầu vào x = ZeroPadding2D(padding=(3, 3), input_shape=(96, 96, 3))(myInput) x = Conv2D(64, (7, 7), strides=(2, 2), name='conv1')(x) """ Bn giúp tăng tốc độ học tập và tăng tính ổn định của mạng neuron bằng cách thay đổi đồng biến nội bộ Bn cũng là 1 lớp trong quá trình đào tạo Ngoài lớp đầu ra, các lớp khác của mạng cập nhật các tham số trong quá trình đào tạo, điều này gây ra những thay đổi trong việc phân phối dữ liệu ở lớp sau, sau khi BN thì nó sẽ giúp cho weights không bị mất câng bằng Nếu kích thước mini-batch là m, thì dữ liệu đầu vào của một lớp nhất định của mạng có thể được biểu thị dưới dạng ma trận bốn chiều (m, f, p, q), m là min kích thước -batch, f là số feature map và p và q lần lượt là chiều rộng và chiều cao của feature. Trong CNN, Ta có thể coi mỗi feature là một tính năng xử lý vì vậy khi sử dụng Batch Chuẩn hóa, kích thước của kích thước mini-batch là: m * p * q Việc sử dụng BN giống như chia sẻ trọng lượng và coi toàn bộ feature là một neuron. """ x = BatchNormalization(axis=3, epsilon=0.00001, name='bn1')(x) x = Activation('relu')(x) x = ZeroPadding2D(padding=(1, 1))(x) x = MaxPooling2D(pool_size=3, strides=2)(x) x = Lambda(LRN2D, name='lrn_1')(x) x = Conv2D(64, (1, 1), name='conv2')(x) x = BatchNormalization(axis=3, epsilon=0.00001, name='bn2')(x) x = Activation('relu')(x) x = ZeroPadding2D(padding=(1, 1))(x) x = Conv2D(192, (3, 3), name='conv3')(x) x = BatchNormalization(axis=3, epsilon=0.00001, name='bn3')(x) x = Activation('relu')(x) x = Lambda(LRN2D, name='lrn_2')(x) x = ZeroPadding2D(padding=(1, 1))(x) x = MaxPooling2D(pool_size=3, strides=2)(x) # Inception3a inception_3a_3x3 = Conv2D(96, (1, 1), name='inception_3a_3x3_conv1')(x) inception_3a_3x3 = BatchNormalization( axis=3, epsilon=0.00001, name='inception_3a_3x3_bn1')(inception_3a_3x3) inception_3a_3x3 = Activation('relu')(inception_3a_3x3) inception_3a_3x3 = ZeroPadding2D(padding=(1, 1))(inception_3a_3x3) inception_3a_3x3 = Conv2D(128, (3, 3), name='inception_3a_3x3_conv2')(inception_3a_3x3) inception_3a_3x3 = BatchNormalization( axis=3, epsilon=0.00001, name='inception_3a_3x3_bn2')(inception_3a_3x3) inception_3a_3x3 = Activation('relu')(inception_3a_3x3) inception_3a_5x5 = Conv2D(16, (1, 1), name='inception_3a_5x5_conv1')(x) inception_3a_5x5 = BatchNormalization( axis=3, epsilon=0.00001, name='inception_3a_5x5_bn1')(inception_3a_5x5) inception_3a_5x5 = Activation('relu')(inception_3a_5x5) inception_3a_5x5 = ZeroPadding2D(padding=(2, 2))(inception_3a_5x5) inception_3a_5x5 = Conv2D(32, (5, 5), name='inception_3a_5x5_conv2')(inception_3a_5x5) inception_3a_5x5 = BatchNormalization( axis=3, epsilon=0.00001, name='inception_3a_5x5_bn2')(inception_3a_5x5) inception_3a_5x5 = Activation('relu')(inception_3a_5x5) inception_3a_pool = MaxPooling2D(pool_size=3, strides=2)(x) inception_3a_pool = Conv2D( 32, (1, 1), name='inception_3a_pool_conv')(inception_3a_pool) inception_3a_pool = BatchNormalization( axis=3, epsilon=0.00001, name='inception_3a_pool_bn')(inception_3a_pool) inception_3a_pool = Activation('relu')(inception_3a_pool) inception_3a_pool = ZeroPadding2D(padding=((3, 4), (3, 4)))(inception_3a_pool) inception_3a_1x1 = Conv2D(64, (1, 1), name='inception_3a_1x1_conv')(x) inception_3a_1x1 = BatchNormalization( axis=3, epsilon=0.00001, name='inception_3a_1x1_bn')(inception_3a_1x1) inception_3a_1x1 = Activation('relu')(inception_3a_1x1) inception_3a = concatenate([ inception_3a_3x3, inception_3a_5x5, inception_3a_pool, inception_3a_1x1 ], axis=3) # Inception3b inception_3b_3x3 = Conv2D(96, (1, 1), name='inception_3b_3x3_conv1')(inception_3a) inception_3b_3x3 = BatchNormalization( axis=3, epsilon=0.00001, name='inception_3b_3x3_bn1')(inception_3b_3x3) inception_3b_3x3 = Activation('relu')(inception_3b_3x3) inception_3b_3x3 = ZeroPadding2D(padding=(1, 1))(inception_3b_3x3) inception_3b_3x3 = Conv2D(128, (3, 3), name='inception_3b_3x3_conv2')(inception_3b_3x3) inception_3b_3x3 = BatchNormalization( axis=3, epsilon=0.00001, name='inception_3b_3x3_bn2')(inception_3b_3x3) inception_3b_3x3 = Activation('relu')(inception_3b_3x3) inception_3b_5x5 = Conv2D(32, (1, 1), name='inception_3b_5x5_conv1')(inception_3a) inception_3b_5x5 = BatchNormalization( axis=3, epsilon=0.00001, name='inception_3b_5x5_bn1')(inception_3b_5x5) inception_3b_5x5 = Activation('relu')(inception_3b_5x5) inception_3b_5x5 = ZeroPadding2D(padding=(2, 2))(inception_3b_5x5) inception_3b_5x5 = Conv2D(64, (5, 5), name='inception_3b_5x5_conv2')(inception_3b_5x5) inception_3b_5x5 = BatchNormalization( axis=3, epsilon=0.00001, name='inception_3b_5x5_bn2')(inception_3b_5x5) inception_3b_5x5 = Activation('relu')(inception_3b_5x5) inception_3b_pool = AveragePooling2D(pool_size=(3, 3), strides=(3, 3))(inception_3a) inception_3b_pool = Conv2D( 64, (1, 1), name='inception_3b_pool_conv')(inception_3b_pool) inception_3b_pool = BatchNormalization( axis=3, epsilon=0.00001, name='inception_3b_pool_bn')(inception_3b_pool) inception_3b_pool = Activation('relu')(inception_3b_pool) inception_3b_pool = ZeroPadding2D(padding=(4, 4))(inception_3b_pool) inception_3b_1x1 = Conv2D(64, (1, 1), name='inception_3b_1x1_conv')(inception_3a) inception_3b_1x1 = BatchNormalization( axis=3, epsilon=0.00001, name='inception_3b_1x1_bn')(inception_3b_1x1) inception_3b_1x1 = Activation('relu')(inception_3b_1x1) inception_3b = concatenate([ inception_3b_3x3, inception_3b_5x5, inception_3b_pool, inception_3b_1x1 ], axis=3) # Inception3c inception_3c_3x3 = utils.conv2d_bn(inception_3b, layer='inception_3c_3x3', cv1_out=128, cv1_filter=(1, 1), cv2_out=256, cv2_filter=(3, 3), cv2_strides=(2, 2), padding=(1, 1)) inception_3c_5x5 = utils.conv2d_bn(inception_3b, layer='inception_3c_5x5', cv1_out=32, cv1_filter=(1, 1), cv2_out=64, cv2_filter=(5, 5), cv2_strides=(2, 2), padding=(2, 2)) inception_3c_pool = MaxPooling2D(pool_size=3, strides=2)(inception_3b) inception_3c_pool = ZeroPadding2D(padding=((0, 1), (0, 1)))(inception_3c_pool) inception_3c = concatenate( [inception_3c_3x3, inception_3c_5x5, inception_3c_pool], axis=3) #inception 4a inception_4a_3x3 = utils.conv2d_bn(inception_3c, layer='inception_4a_3x3', cv1_out=96, cv1_filter=(1, 1), cv2_out=192, cv2_filter=(3, 3), cv2_strides=(1, 1), padding=(1, 1)) inception_4a_5x5 = utils.conv2d_bn(inception_3c, layer='inception_4a_5x5', cv1_out=32, cv1_filter=(1, 1), cv2_out=64, cv2_filter=(5, 5), cv2_strides=(1, 1), padding=(2, 2)) inception_4a_pool = AveragePooling2D(pool_size=(3, 3), strides=(3, 3))(inception_3c) inception_4a_pool = utils.conv2d_bn(inception_4a_pool, layer='inception_4a_pool', cv1_out=128, cv1_filter=(1, 1), padding=(2, 2)) inception_4a_1x1 = utils.conv2d_bn(inception_3c, layer='inception_4a_1x1', cv1_out=256, cv1_filter=(1, 1)) inception_4a = concatenate([ inception_4a_3x3, inception_4a_5x5, inception_4a_pool, inception_4a_1x1 ], axis=3) #inception4e inception_4e_3x3 = utils.conv2d_bn(inception_4a, layer='inception_4e_3x3', cv1_out=160, cv1_filter=(1, 1), cv2_out=256, cv2_filter=(3, 3), cv2_strides=(2, 2), padding=(1, 1)) inception_4e_5x5 = utils.conv2d_bn(inception_4a, layer='inception_4e_5x5', cv1_out=64, cv1_filter=(1, 1), cv2_out=128, cv2_filter=(5, 5), cv2_strides=(2, 2), padding=(2, 2)) inception_4e_pool = MaxPooling2D(pool_size=3, strides=2)(inception_4a) inception_4e_pool = ZeroPadding2D(padding=((0, 1), (0, 1)))(inception_4e_pool) inception_4e = concatenate( [inception_4e_3x3, inception_4e_5x5, inception_4e_pool], axis=3) #inception5a inception_5a_3x3 = utils.conv2d_bn(inception_4e, layer='inception_5a_3x3', cv1_out=96, cv1_filter=(1, 1), cv2_out=384, cv2_filter=(3, 3), cv2_strides=(1, 1), padding=(1, 1)) inception_5a_pool = AveragePooling2D(pool_size=(3, 3), strides=(3, 3))(inception_4e) inception_5a_pool = utils.conv2d_bn(inception_5a_pool, layer='inception_5a_pool', cv1_out=96, cv1_filter=(1, 1), padding=(1, 1)) inception_5a_1x1 = utils.conv2d_bn(inception_4e, layer='inception_5a_1x1', cv1_out=256, cv1_filter=(1, 1)) inception_5a = concatenate( [inception_5a_3x3, inception_5a_pool, inception_5a_1x1], axis=3) #inception_5b inception_5b_3x3 = utils.conv2d_bn(inception_5a, layer='inception_5b_3x3', cv1_out=96, cv1_filter=(1, 1), cv2_out=384, cv2_filter=(3, 3), cv2_strides=(1, 1), padding=(1, 1)) inception_5b_pool = MaxPooling2D(pool_size=3, strides=2)(inception_5a) inception_5b_pool = utils.conv2d_bn(inception_5b_pool, layer='inception_5b_pool', cv1_out=96, cv1_filter=(1, 1)) inception_5b_pool = ZeroPadding2D(padding=(1, 1))(inception_5b_pool) inception_5b_1x1 = utils.conv2d_bn(inception_5a, layer='inception_5b_1x1', cv1_out=256, cv1_filter=(1, 1)) inception_5b = concatenate( [inception_5b_3x3, inception_5b_pool, inception_5b_1x1], axis=3) av_pool = AveragePooling2D(pool_size=(3, 3), strides=(1, 1))(inception_5b) # làm phẳng. Ví dụ đầu vào là 20x20 thì đầu ra là 400X1 reshape_layer = Flatten()(av_pool) dense_layer = Dense(128, name='dense_layer')(reshape_layer) norm_layer = Lambda(lambda x: K.l2_normalize(x, axis=1), name='norm_layer')(dense_layer) return Model(inputs=[myInput], outputs=norm_layer)