def PreHamor2(src):
    '''Preprocess image of Hamorrhage by morphology. 
    '''
    print 'Preprocessing...'
    img=src.astype(float)
    b,g,r = cv2.split(img)
    
    kernel = cv2.getStructuringElement(cv2.MORPH_CROSS,(20, 20)) 
#    eroded = cv2.erode(g,kernel) 
#    dilated = cv2.dilate(eroded,kernel)

    blackhat = cv2.morphologyEx(g, cv2.MORPH_BLACKHAT, kernel) 
    
    tmp = g-blackhat*5
    dst = g-blackhat*5
 
    tmp.clip(0,255)
    dst.clip(0,255)
    f_dst = createFlatView(dst)
    f_src = createFlatView(src)
    #The background area must be removed
    for i in xrange(f_dst.size):
        if f_dst[i]<30 and (f_src[3*i]>10 or f_src[3*i+1]>10 or f_src[3*i+2]>10):
            f_dst[i]=80
        else:
            f_dst[i]=0



#     dst = dst.astype(np.uint8)
#     dst = cv2.medianBlur(dst,3)
#     
    
#     tmp_xx=cv2.filter2D(tmp,-1, np.array([[0,0,0],[0,1,-1],[0,-1,1]]))
#     beta=0
#     alpha=30
#     tmp_xx = 255/(1+np.exp(-(tmp_xx-beta)/alpha))
#     tmp_xy=cv2.filter2D(tmp,-1, np.array([[0,0,0],[0,1,-1],[0,-1,1]]))
#     beta=0
#     alpha=30
#     tmp_xy = 255/(1+np.exp(-(tmp_xy-beta)/alpha))
#     tmp_yy=cv2.filter2D(tmp,-1, np.array([[0,1,0],[0,-2,0],[0,1,0]]))
#     beta=0
#     alpha=30
#     tmp_yy = 255/(1+np.exp(-(tmp_yy-beta)/alpha))
    
    featureImg = np.zeros(img.shape,img.dtype)
    cv2.merge((tmp,g,tmp),featureImg)
    tmpImg = np.zeros(img.shape,img.dtype)
    cv2.merge((tmp,tmp,tmp),tmpImg)
    
    return featureImg,dst,tmpImg
def PreHamor(src):
    '''Preprocess image of Hamorrhage by morphology. 
    '''
    print 'Preprocessing...'
    img=src.astype(float)
    b,g,r = cv2.split(img)
    
    kernel = cv2.getStructuringElement(cv2.MORPH_CROSS,(20, 20)) 
#    eroded = cv2.erode(g,kernel) 
#    dilated = cv2.dilate(eroded,kernel)

    blackhat = cv2.morphologyEx(g, cv2.MORPH_BLACKHAT, kernel) 
    
    tmp = g-blackhat*5
    dst = g-blackhat*5
#     blackhat = cv2.morphologyEx(dst, cv2.MORPH_BLACKHAT, kernel) 
#     tmp = g-blackhat

    
#     wsize=img.shape[0]/30
#     if wsize%2 is 0:
#         wsize=wsize+1
#     
#     tmp=tmp.clip(0,255)
#     tmp1 = tmp.astype(np.uint8)
#     bgEst = cv2.medianBlur(tmp1,wsize)
#     
#     dst=(bgEst-tmp).clip(0,255)
#     
#     f_dst = createFlatView(dst)
#     for i in xrange(f_dst.size):
#         if f_dst[i]<20:
#             f_dst[i]=0
#     dst=dst*5
    dst.clip(0,255)
    f_dst = createFlatView(dst)
    f_src = createFlatView(src)
    #The background area must be removed
    for i in xrange(f_dst.size):
        if f_dst[i]<15 and (f_src[3*i]>10 or f_src[3*i+1]>10 or f_src[3*i+2]>10):
            f_dst[i]=80
        else:
            f_dst[i]=0
#     beta=10
#     alpha=-0.05
#     dst = 255/(1+np.exp(-(tmp-beta)/alpha))
    dst = dst.astype(np.uint8)
    dst = cv2.medianBlur(dst,3)  
    return dst
def ExudateSegment(originImg, ResultPath, presegPath=''):
    presegImg = PreprocessingModule.PreExudate(originImg)
    presegImg = presegImg.astype(np.uint8)
    presegImg = cv2.medianBlur(presegImg, 3)
    
    f_presegImg = createFlatView(presegImg)
 
    for i in xrange(f_presegImg.size):
        if f_presegImg[i]>100:
            f_presegImg[i]=80
        else:
            f_presegImg[i]=0
    #cv2.imwrite(presegPath,presegImg)
    
    CNNSeg = CNNSegModule.ExudateCNNSegNetwork('./ConfExu.txt')
    result=CNNSeg.segment(originImg, presegImg, 128)
    
    #connect two Images
    showImg = np.full((result.shape[0],result.shape[1]*2+3,result.shape[2]), 255, result.dtype)
    showImg[0:originImg.shape[0],0:originImg.shape[1],:]=originImg[:,:,:]
    showImg[0:result.shape[0],originImg.shape[1]+3:originImg.shape[1]+result.shape[1]+3,:]= result[:,:,:]
    
    cv2.imwrite(ResultPath,showImg)
Пример #4
0
 def apply(self, src, dst):
     """Apply the filter with a BGR or gray source/destination."""
     srcFlatView = utils.createFlatView(src)
     dstFlatView = utils.createFlatView(dst)
     utils.applyLookupArray(self._vLookupArray, srcFlatView, dstFlatView)
Пример #5
0
 def apply(self, src, dest):
     flatSrc = utils.createFlatView(src)
     flatDest = utils.createFlatView(dest)
     utils.searchLookupTable(self._lookupArray, flatSrc, flatDest)
def HamorSegment(originImg, ResultPath, presegPath=''):
#     cv2.imwrite("./temp_ori.jpg",originImg)
    featureImg,presegImg,tmpImg = PreprocessingModule.PreHamor2(originImg)
#     presegImg = presegImg.astype(np.uint8)
#     presegImg = cv2.medianBlur(presegImg, 3)
#     
#     f_presegImg = createFlatView(presegImg)
#  
#     for i in xrange(f_presegImg.size):
#         if f_presegImg[i]>100:
#             f_presegImg[i]=80
#         else:
#             f_presegImg[i]=0

###Preprocess by Jinpeng
    
#     originImg1 = cv2.imread("/home/linhuangjing/Desktop/Retina_Data/Group-1/DR/DR_102.jpg")
    
    
    cv2.imwrite("./temp_ori.jpg",originImg)
    originImg2 = cv2.imread("./temp_ori.jpg")
    
#     cv2.imwrite("/home/linhuangjing/Desktop/Retina_Data/Group-1/results/strange.jpg",originImg1-originImg2)
    
    import JPModule
    JPModule.Preprocess("./temp_ori.jpg","./temp_jppre.jpg")
    JPImg=cv2.imread("./temp_jppre.jpg")
    b,g,r = cv2.split(JPImg)
    
    cv2.imwrite("/home/linhuangjing/Desktop/Retina_Data/Group-1/results/MyPre_102.jpg",presegImg)
    cv2.imwrite("/home/linhuangjing/Desktop/Retina_Data/Group-1/results/JPPre_102.jpg",JPImg)
    
    #Mask two images
    f_g = createFlatView(g)
    f_presegImg = createFlatView(presegImg)
    for i in xrange(f_presegImg.size):
        if f_presegImg[i]>f_g[i]:
            f_presegImg[i] = f_g[i]    
    
    
    cv2.imwrite("/home/linhuangjing/Desktop/Retina_Data/Group-1/results/Pre_102.jpg",presegImg)
    

    preImg3 = np.zeros(originImg.shape,presegImg.dtype)
    cv2.merge((presegImg,presegImg,presegImg),preImg3)
    showTmpImg = np.full((originImg.shape[0],originImg.shape[1]*2+3,originImg.shape[2]), 255, tmpImg.dtype)
    showTmpImg[0:preImg3.shape[0],0:preImg3.shape[1],:]=preImg3[:,:,:]
    showTmpImg[0:tmpImg.shape[0],preImg3.shape[1]+3:preImg3.shape[1]+tmpImg.shape[1]+3,:]= tmpImg[:,:,:]
    cv2.imwrite(presegPath,showTmpImg)
    
    
    featureImg = featureImg.clip(0,255)
    cv2.imwrite("/home/linhuangjing/Desktop/featureImg.jpg",featureImg)
    
    CNNSeg = CNNSegModule.HamorCNNSegNetwork('./ConfHamor.txt')
    result=CNNSeg.segment(featureImg, presegImg, 1)
    
    #connect two Images
#     showImg = np.full((result.shape[0],result.shape[1]*2+3,result.shape[2]), 255, result.dtype)
#     showImg[0:originImg.shape[0],0:originImg.shape[1],:]=originImg[:,:,:]
#     showImg[0:result.shape[0],originImg.shape[1]+3:originImg.shape[1]+result.shape[1]+3,:]= result[:,:,:]

    result=result.astype(float)
    b,g,r = cv2.split(result)
    a = np.zeros(g.shape,g.dtype)
    
    f_g = createFlatView(g)
    f_a = createFlatView(a)
    f_r = createFlatView(r)
    f_b = createFlatView(b)
    for i in xrange(f_g.size):
        if f_g[i]>20 or f_r[i]>20 or f_b[i]>20:
            f_a[i]=255
    
    showImg = np.zeros((result.shape[0],result.shape[1],4),g.dtype)
    cv2.merge((b,g,r,a),showImg)
    
    cv2.imwrite(ResultPath,showImg)
    
    
    
    
    
    
        
Пример #7
0
 def apply(self, src, dst):
     """Apply the filter with a BGR or gray source/destination."""
     srcFlatView = utils.createFlatView(src)
     dstFlatView = utils.createFlatView(dst)
     utils.applyLookupArray(self._vLookupArray, srcFlatView,
                            dstFlatView)
def PreExudate(src):
    '''Preprocess image of exudates by estimate the Background via a Median Filter,
       Which is used for exudates preprocessing.
    '''
    # InImage=cv2.cvtColor(src,cv2.cv.CV_BGR2GRAY)
    print 'Preprocessing...'
    img=src.astype(float)
    b,g,r = cv2.split(img)
    InImage = np.zeros(g.shape,g.dtype)
    cv2.addWeighted(b,0.333333,r,0.333333,0,InImage)
    cv2.addWeighted(g,0.333333,InImage,1.0,0,InImage)
#     cv2.addWeighted(b,0.5,r,0.5,0,InImage)
    
    wsize=img.shape[0]/30
    if wsize%2 is 0:
        wsize=wsize+1
    
    InImage = InImage.astype(np.uint8)
    bgEst = cv2.medianBlur(InImage,wsize)
    
    
    bgMask = np.zeros(bgEst.shape,bgEst.dtype)
    bgMask2 = np.zeros(bgEst.shape,bgEst.dtype)
    
    
    f_InImage = createFlatView(InImage)
    f_bgEst = createFlatView(bgEst)
    f_bgMask = createFlatView(bgMask)
    f_bgMask2 = createFlatView(bgMask2)
    
    for i in xrange(f_bgMask.size):
        if f_InImage[i]>f_bgEst[i]:
            f_bgMask[i] = f_InImage[i]
            f_bgMask2[i] = f_bgEst[i]
        else:
            f_bgMask[i] = f_bgEst[i]
            f_bgMask2[i] = f_InImage[i]
    
   
    im1 = bgMask-bgMask2
    im2 = g-bgEst
    dst = np.zeros(im2.shape,im2.dtype)
     
    f_im1 = createFlatView(im1)
    f_im2 = createFlatView(im2)
    f_dst = createFlatView(dst)
     
    for i in xrange(f_im1.size):
        if f_im1[i]<8:
            f_im1[i] = 0
        if f_im2[i]<6:
            f_im2[i] = 0
        if f_im1[i]<f_im2[i]:
            f_dst[i] = f_im1[i]
        else:
            f_dst[i] = f_im2[i]
        if f_dst[i]>5:
            f_dst[i] = 255
        else:
            f_dst[i] = 0
    return dst
Пример #9
0
 def apply(self, src, dst):
     ''' Apply the filter with BGR or gray source/dest'''
     srcFlatView = utils.createFlatView(src)
     dstFlatView = utils.createFlatView(dst)
     utils.applyLookupArray(self._vLookupArray, srcFlatView, dstFlatView)