Пример #1
0
    def crossvalidate_delta(self, folds):
        import utils
        cv_scheme = utils.crossValidationScheme(folds, self.nTrain)
        ldeltas = SP.arange(-3, -1.5, .01)
        Ss = []
        Us = []
        Uys = []
        UCs = []
        err = 0.0
        errs = []
        for ldelta in ldeltas:
            for test_set in cv_scheme:
                train_set = ~test_set
                K_sub = self.kernel[SP.ix_(train_set, train_set)]
                K_cross = self.kernel[SP.ix_(~train_set, train_set)]
                # print LA.inv((K_sub + SP.eye(train_set.sum())*self.delta))
                Core = SP.dot(
                    K_cross,
                    LA.inv((K_sub + SP.eye(train_set.sum()) * SP.exp(ldelta))))
                diff = self.yTrain[test_set] -\
                    SP.dot(Core, self.yTrain[train_set])
                err += (diff**2).sum() / diff.size
                S, U = LA.eigh(self.kernel[SP.ix_(train_set, train_set)])
                Ss.append(S)
                Us.append(U)
                Uys.append(SP.dot(U.T, self.yTrain[train_set]))
                UCs.append(SP.dot(U.T, SP.ones_like(self.yTrain[train_set])))
            errs.append(err / len(cv_scheme))
            err = 0.0

        nll_scores = []
        for ldelta in ldeltas:
            # print 'ldelta equals', ldelta
            score = 0.0
            for i in xrange(len(cv_scheme)):
                score += lmm_fast.nLLeval(ldelta, (Uys[i])[:, 0], UCs[i],
                                          Ss[i])
            nll_scores.append(score / len(cv_scheme))
        print 'best ldelta found ll', ldeltas[SP.argmin(nll_scores)]
        return ldeltas[SP.argmin(errs)]
Пример #2
0
    def crossvalidate_delta(self, folds):
        import utils
        cv_scheme = utils.crossValidationScheme(folds, self.nTrain)
        ldeltas = SP.arange(-3, -1.5, .01)
        Ss = []
        Us = []
        Uys = []
        UCs = []
        err = 0.0
        errs = []
        for ldelta in ldeltas:
            for test_set in cv_scheme:
                train_set = ~test_set
                K_sub = self.kernel[SP.ix_(train_set, train_set)]
                K_cross = self.kernel[SP.ix_(~train_set, train_set)]
                # print LA.inv((K_sub + SP.eye(train_set.sum())*self.delta))
                Core = SP.dot(K_cross, LA.inv((K_sub + SP.eye(train_set.sum()) *
                                               SP.exp(ldelta))))
                diff = self.yTrain[test_set] -\
                    SP.dot(Core, self.yTrain[train_set])
                err += (diff**2).sum()/diff.size
                S, U = LA.eigh(self.kernel[SP.ix_(train_set, train_set)])
                Ss.append(S)
                Us.append(U)
                Uys.append(SP.dot(U.T, self.yTrain[train_set]))
                UCs.append(SP.dot(U.T, SP.ones_like(self.yTrain[train_set])))
            errs.append(err/len(cv_scheme))
            err = 0.0

        nll_scores = []
        for ldelta in ldeltas:
            # print 'ldelta equals', ldelta
            score = 0.0
            for i in xrange(len(cv_scheme)):
                score += lmm_fast.nLLeval(ldelta, (Uys[i])[:, 0], UCs[i], Ss[i])
            nll_scores.append(score/len(cv_scheme))
        print 'best ldelta found ll', ldeltas[SP.argmin(nll_scores)]
        return ldeltas[SP.argmin(errs)]