Пример #1
0
    def __get_numslices(self):
        ts = time.clock()
        # nums_slice = np.zeros(len(self.images_file_train), dtype='int')
        # for i, image_file in enumerate(self.images_file_train):
        #     image_path = os.path.join(self.data_dir, image_file)
        #     images = np.load(image_path)
        #     nums_slice[i] = len(images)
        # print(nums_slice)
        # print(np.sum(nums_slice))

        nums_slice = [41,96,276,44,177,168,183,167,186,133,189,90,226,64,181,89,241,59,37,276,110,123,119,111,250, \
                      77,191,194,104,215,98,170,75,277,186,76,229,99,219,173,69,239,36,260,280,112,299,258,59,73, \
                      189,29,176,116,189,233,214,179,89,92,205,118,232,56,67,170,113,169,189,132,192,139,114,194, \
                      113,59,232,179,83,113,64,266,58,292,193,46,116,175,98,122,234,187,251,85,79,115,61,120,113, \
                      118,215,50,37,263,56,259,215,241,248,91,149,201,79,29,198,227,112]
        # nums_slice = [41, 96, 276, 44, 177, 168, 183, 167, 186, 133, 189, 90]
        print("run time of importing all data: ",
              cvtSecond2HMS(time.clock() - ts))
        return nums_slice
Пример #2
0
    def __get_numslices(self):
        ts = time.clock()

        category = self.data_dir.split('/')[-1]
        info_file = 'cache/{0}/datasets/info.npy'.format(category)
        mkdirInCache(info_file)

        if os.path.isfile(info_file):
            self.images_file_train, nums_slice, self.images_file_test = np.load(
                info_file)
        else:
            nums_slice = np.zeros(len(self.images_file_train), dtype='int')
            for i, image_file in enumerate(self.images_file_train):
                image_path = os.path.join(self.data_dir, image_file)
                images = self._load_image(image_path)
                nums_slice[i] = len(images)
            np.save(
                info_file,
                (self.images_file_train, nums_slice, self.images_file_test))
        # print(nums_slice)
        # print(np.sum(nums_slice))

        # home
        # nums_slice = [41,96,276,44,177,168,183,167,186,133,189,90,226,64,181,89,241,59,37,276,110,123,119,111,250, \
        #               77,191,194,104,215,98,170,75,277,186,76,229,99,219,173,69,239,36,260,280,112,299,258,59,73, \
        #               189,29,176,116,189,233,214,179,89,92,205,118,232,56,67,170,113,169,189,132,192,139,114,194, \
        #               113,59,232,179,83,113,64,266,58,292,193,46,116,175,98,122,234,187,251,85,79,115,61,120,113, \
        #               118,215,50,37,263,56,259,215,241,248,91,149,201,79,29,198,227,112]
        # nums_slice = [41, 96, 276, 44, 177, 168, 183, 167, 186, 133, 189, 90]

        # office
        # nums_slice = [112, 36, 292, 132, 36, 241, 194, 59, 110, 56, 241, 194]
        # nums_slice = [112, 36]

        case_num = len(nums_slice)
        self.images_file_train, self.images_file_test, self.masks_file_train, self.masks_file_test = \
            self.images_file_train[:case_num], self.images_file_test[:case_num], self.masks_file_train[
                                                                                 :case_num], self.masks_file_test[
                                                                                             :case_num]
        print("run time of importing {0} data is {1}".format(
            np.sum(nums_slice), cvtSecond2HMS(time.clock() - ts)))
        return nums_slice
Пример #3
0
        modelcheckpoint='cache/breast/model/unet_gen_448_448_padecho.hdf5',
        batch_size=16,
        is_datagen=True,
        images_npy='cache/breast/datasets/images_pad_echo_448_448_tf.npy',
        masks_npy='cache/breast/datasets/masks_pad_echo_448_448_tf.npy')


if __name__ == '__main__':
    # print_env()

    ts = time.clock()

    # (X_test, y_test, predicts) = run_unet_gen(istrain=False)  # dice = 86.6

    (X_test, y_test,
     predicts) = run_unet_gen_448_448(istrain=True)  # dice = 84.7

    # (X_test, y_test, predicts) = run_unet_gen_448_448_echo(istrain=False)  # dice = 80.25

    # (X_test, y_test, predicts) = run_unet_gen_448_448_padecho(istrain=False)  # dice = 80.1

    print("total process time: %s" % cvtSecond2HMS(time.clock() - ts))
    #
    # for i in range(0, 1):
    #     showImages(X_test[i, :, :, 0], y_test[i, :, :, 0], predicts[i, :, :, 0])
    #
    # # for (image, mask, predict) in zip(X_test, y_test, predicts):
    # #     seg.show(image[0, :, :], mask[0, :, :], predict[0, :, :])
    #
    # plt.show()