from sklearn.svm import SVC from sklearn.metrics import confusion_matrix import utils num_classes = 9 num_kernels = 4 train_path = "/media/linzhank/850EVO_1T/Works/Action_Recognition/Data/train/joint/" test_path = "/media/linzhank/850EVO_1T/Works/Action_Recognition/Data/test/joint/" result_path= "/media/linzhank/850EVO_1T/Works/Action_Recognition/Data/result" # Load data train_data = spio.loadmat(train_path + "joint_train.mat")["joint_train"] num_examples_train = train_data.shape[0] initid_train = utils.detectInit(train_data) train_data = train_data.reshape(num_examples_train,150,75) train_classes = spio.loadmat(train_path + "labels_train.mat")["labels_train"] train_labels = np.argmax(train_classes, axis=1) test_data = spio.loadmat(test_path + "joint_test.mat")["joint_test"] num_examples_test = test_data.shape[0] initid_test = utils.detectInit(test_data) test_data = test_data.reshape(num_examples_test,150,75) test_classes = spio.loadmat(test_path + "labels_test.mat")["labels_test"] test_labels = np.argmax(test_classes, axis=1) # Use 5, 10, 15,...,40 frames of data to train 8 svm predictor num_frames = 5*np.arange(1,9) # Init best kernel storage best_kernel = np.array([""]*num_frames.shape[0], dtype="|S8")
from datetime import datetime from sklearn import neighbors from sklearn.metrics import confusion_matrix import utils train_path = "/media/linzhank/850EVO_1T/Works/Action_Recognition/Data/train/joint/" test_path = "/media/linzhank/850EVO_1T/Works/Action_Recognition/Data/test/joint/" TODAY = datetime.today().strftime("%Y%m%d") result_path = "/media/linzhank/850EVO_1T/Works/Action_Recognition/Data/result{}".format( TODAY) # Load train data train_data = spio.loadmat(train_path + "joint_train.mat")["joint_train"] num_examples_train = train_data.shape[0] initid_train = utils.detectInit(train_data, offset=10) train_data = train_data.reshape(num_examples_train, 150, 75) train_classes = spio.loadmat(train_path + "labels_train.mat")["labels_train"] train_labels = np.argmax(train_classes, axis=1) # Load test data test_data = spio.loadmat(test_path + "joint_test.mat")["joint_test"] num_examples_test = test_data.shape[0] initid_test = utils.detectInit(test_data, offset=10) test_data = test_data.reshape(num_examples_test, 150, 75) test_classes = spio.loadmat(test_path + "labels_test.mat")["labels_test"] test_labels = np.argmax(test_classes, axis=1) # On your mark start_t = time.time() # Use 5, 10, 15,...,40 frames of data to train 8 knn predictor num_frames = 5 * np.arange(1, 9)