def get_plate_ver2(image, Dmax=608, Dmin = 250): vehicle = preprocess_ver2(image) ratio = float(max(vehicle.shape[:2])) / min(vehicle.shape[:2]) side = int(ratio * Dmin) bound_dim = min(side, Dmax) _ , LpImg, _, cor = detect_lp(wpod_net, vehicle, bound_dim, lp_threshold=0.5) return vehicle, LpImg, cor
def get_plate(image_path): Dmax = 608 Dmin = 288 vehicle = preprocess_image(image_path) ratio = float(max(vehicle.shape[:2])) / min(vehicle.shape[:2]) side = int(ratio * Dmin) bound_dim = min(side, Dmax) _ , LpImg, _, cor, final_x, final_y = detect_lp(wpod_net, vehicle, bound_dim, lp_threshold=0.5) return vehicle, LpImg, cor, final_x, final_y
def get_plate(image_path, dir_path): Dmax = 608 Dmin = 288 vehicle = preprocess_image(image_path, dir_path) # print("preprocessing ends-> !! ") ratio = float(max(vehicle.shape[:2])) / min(vehicle.shape[:2]) # 350-197 side = int(ratio * Dmin) bound_dim = min(side, Dmax) _, LpImg, _, cor = detect_lp(wpod_net, vehicle, bound_dim, lp_threshold=0.5) return LpImg, cor
def get_plate(image_path): Dmax = 608 Dmin = 288 # Loading model for plate detection wpod_net_path = "wpod-net.json" wpod_net = load_modell(wpod_net_path) vehicle = preprocess_image(image_path) ratio = float(max(vehicle.shape[:2])) / min(vehicle.shape[:2]) side = int(ratio * Dmin) bound_dim = min(side, Dmax) _, LpImg, _, cor = detect_lp(wpod_net, vehicle, bound_dim, lp_threshold=0.5) return vehicle, LpImg, cor
def get_plate(image_path): Dmax = 608 Dmin = 288 vehicle = preprocess_image(image_path) ratio = float(max(vehicle.shape[:2])) / min(vehicle.shape[:2]) side = int(ratio * Dmin) bound_dim = min(side, Dmax) _, LpImg, _, cor = detect_lp(wpod_net, vehicle, bound_dim, lp_threshold=0.5) count = 0 for img in LpImg: plt.imsave("croppedImgs/cropped" + str(count) + ".jpg", img) count += 1 return LpImg