Пример #1
0
def main(prj_dir=None, model=None, mode=None):

    #                               Configuration Part                       #
    if mode is 'train':

        import path_setting as ps

        set_path = ps.PathSetting(prj_dir, model)
        logs_dir = initial_logs_dir = set_path.logs_dir
        input_dir = set_path.input_dir
        output_dir = set_path.output_dir
        norm_dir = set_path.norm_dir
        valid_file_dir = set_path.valid_file_dir

        sys.path.insert(0, prj_dir + '/configure/ACAM')
        import config as cg

        global initLr, dropout_rate, max_epoch, batch_size, valid_batch_size
        initLr = cg.lr
        dropout_rate = cg.dropout_rate
        max_epoch = cg.max_epoch
        batch_size = valid_batch_size = cg.batch_size

        global w, u
        w = cg.w
        u = cg.u

        global bdnn_winlen, bdnn_inputsize, bdnn_outputsize
        bdnn_winlen = (((w - 1) / u) * 2) + 3
        bdnn_inputsize = int(bdnn_winlen * num_features)
        bdnn_outputsize = int(bdnn_winlen)

        global glimpse_hidden, bp_hidden, glimpse_out, bp_out, nGlimpses,\
            lstm_cell_size, action_hidden_1, action_hidden_2

        glimpse_hidden = cg.glimpse_hidden
        bp_hidden = cg.bp_hidden
        glimpse_out = bp_out = cg.glimpse_out
        nGlimpses = cg.nGlimpse  # 7
        lstm_cell_size = cg.lstm_cell_size
        action_hidden_1 = cg.action_hidden_1  # default : 256
        action_hidden_2 = cg.action_hidden_2  # default : 256

    #                               Graph Part                                 #

    mean_acc_list = []
    var_acc_list = []

    print('Mode : ' + mode)
    print("Graph initialization...")
    with tf.device(device):
        with tf.variable_scope("model", reuse=None):
            m_train = Model(batch_size=batch_size,
                            reuse=None,
                            is_training=True)
            # m_train(batch_size)
    with tf.device(device):
        with tf.variable_scope("model", reuse=True):
            m_valid = Model(batch_size=valid_batch_size,
                            reuse=True,
                            is_training=False)

    print("Done")

    #                               Summary Part                               #

    print("Setting up summary op...")
    summary_ph = tf.placeholder(dtype=tf.float32)

    with tf.variable_scope("Training_procedure"):

        cost_summary_op = tf.summary.scalar("cost", summary_ph)
        accuracy_summary_op = tf.summary.scalar("accuracy", summary_ph)

    # train_summary_writer = tf.summary.FileWriter(logs_dir + '/train/', max_queue=4)
    # valid_summary_writer = tf.summary.FileWriter(logs_dir + '/valid/', max_queue=4)
    # summary_dic = summary_generation(valid_file_dir)

    print("Done")

    #                               Model Save Part                            #

    print("Setting up Saver...")
    saver = tf.train.Saver()
    ckpt = tf.train.get_checkpoint_state(initial_logs_dir)
    print("Done")

    #                               Session Part                               #

    sess_config = tf.ConfigProto(allow_soft_placement=True,
                                 log_device_placement=False)
    sess_config.gpu_options.allow_growth = True
    sess = tf.Session(config=sess_config)

    if mode is 'train':
        train_summary_writer = tf.summary.FileWriter(logs_dir + '/train/',
                                                     sess.graph,
                                                     max_queue=2)
        valid_summary_writer = tf.summary.FileWriter(logs_dir + '/valid/',
                                                     max_queue=2)

    if ckpt and ckpt.model_checkpoint_path:  # model restore
        print("Model restored...")
        print(initial_logs_dir + ckpt_name)
        if mode is 'train':
            saver.restore(sess, ckpt.model_checkpoint_path)
        else:
            saver.restore(sess, initial_logs_dir + ckpt_name)
            saver.save(sess, initial_logs_dir + "/model_ACAM.ckpt",
                       0)  # model save

        print("Done")

    else:
        sess.run(tf.global_variables_initializer()
                 )  # if the checkpoint doesn't exist, do initialization

    if mode is 'train':
        train_data_set = dr.DataReader(
            input_dir, output_dir, norm_dir, w=w, u=u,
            name="train")  # training data reader initialization
    if mode is 'train':

        for itr in range(max_epoch):

            start_time = time.time()

            train_inputs, train_labels = train_data_set.next_batch(batch_size)

            feed_dict = {
                m_train.inputs: train_inputs,
                m_train.labels: train_labels,
                m_train.keep_probability: dropout_rate
            }

            sess.run(m_train.train_op, feed_dict=feed_dict)

            if itr % 10 == 0 and itr >= 0:

                train_cost, train_reward, train_avg_b, train_rminusb, train_p_bps, train_lr \
                    = sess.run([m_train.cost, m_train.reward, m_train.avg_b, m_train.rminusb, m_train.p_bps,
                                m_train.print_lr]
                               , feed_dict=feed_dict)

                duration = time.time() - start_time
                print(
                    "Step: %d, cost: %.4f, accuracy: %4.4f, b: %4.4f, R-b: %4.4f, p_bps: %4.4f, lr: %7.6f (%.3f sec)"
                    % (itr, train_cost, train_reward, train_avg_b,
                       train_rminusb, train_p_bps, train_lr, duration))

                train_cost_summary_str = sess.run(
                    cost_summary_op, feed_dict={summary_ph: train_cost})
                train_accuracy_summary_str = sess.run(
                    accuracy_summary_op, feed_dict={summary_ph: train_reward})
                train_summary_writer.add_summary(
                    train_cost_summary_str,
                    itr)  # write the train phase summary to event files
                train_summary_writer.add_summary(train_accuracy_summary_str,
                                                 itr)

            # if train_data_set.eof_checker():

            # if itr % val_freq == 0 and itr >= val_start_step:
            if itr % 50 == 0 and itr > 0:
                saver.save(sess, logs_dir + "/model.ckpt", itr)  # model save
                print('validation start!')
                valid_accuracy, valid_cost = \
                    utils.do_validation(m_valid, sess, valid_file_dir, norm_dir,
                                        type='ACAM')

                print("valid_cost: %.4f, valid_accuracy=%4.4f" %
                      (valid_cost, valid_accuracy * 100))
                valid_cost_summary_str = sess.run(
                    cost_summary_op, feed_dict={summary_ph: valid_cost})
                valid_accuracy_summary_str = sess.run(
                    accuracy_summary_op,
                    feed_dict={summary_ph: valid_accuracy})
                valid_summary_writer.add_summary(
                    valid_cost_summary_str,
                    itr)  # write the train phase summary to event files
                valid_summary_writer.add_summary(valid_accuracy_summary_str,
                                                 itr)

                # mean_accuracy, var_accuracy = full_evaluation(m_valid, sess, valid_batch_size, valid_file_dir, valid_summary_writer, summary_dic, itr)
                # if mean_accuracy >= 0.991:
                #
                #     print('model was saved!')
                #     model_name = '/model' + str(int(mean_accuracy * 1e4)) + 'and'\
                #                  + str(int(var_accuracy * 1e5)) + '.ckpt'
                #     saver.save(sess, save_dir + model_name, itr)
                # mean_acc_list.append(mean_accuracy)
                # var_acc_list.append(var_accuracy)

                # train_data_set.initialize()

    elif mode == 'test':

        final_softout, final_label = utils.vad_test(m_valid, sess,
                                                    valid_batch_size,
                                                    test_file_dir, norm_dir,
                                                    data_len, eval_type)

        # if data_len is None:
        #     return final_softout, final_label
        # else:
        #     final_softout = final_softout[0:data_len, :]
        #     final_label = final_label[0:data_len, :]

        # fpr, tpr, thresholds = metrics.roc_curve(final_label, final_softout, pos_label=1)
        # eval_auc = metrics.auc(fpr, tpr)
        # print(eval_auc)

        # full_evaluation(m_valid, sess, valid_batch_size, test_file_dir, valid_summary_writer, summary_dic, 0)
        # if visualization:
        #     global attention
        #     attention = np.asarray(attention)
        #     sio.savemat('attention.mat', {'attention' : attention})
        #     subprocess.call(['./visualize.sh'])
        if data_len is None:
            return final_softout, final_label
        else:
            return final_softout[0:data_len, :], final_label[0:data_len, :]
Пример #2
0
def main(save_dir, prj_dir=None, model=None, mode=None, dev="/gpu:2"):
    #                               Configuration Part                       #
    # os.environ["CUDA_VISIBLE_DEVICES"] = '3'

    device = dev
    os.environ["CUDA_VISIBLE_DEVICES"] = device[-1]
    if mode is 'train':
        import path_setting as ps

        set_path = ps.PathSetting(prj_dir, model,save_dir)
        logs_dir = initial_logs_dir = set_path.logs_dir
        input_dir = set_path.input_dir
        output_dir = set_path.output_dir
        norm_dir = set_path.norm_dir
        valid_file_dir = set_path.valid_file_dir

        sys.path.insert(0, prj_dir+'/configure/LSTM')
        import config as cg

        global seq_size, batch_num

        seq_size = cg.seq_len
        batch_num = cg.num_batches

        global learning_rate, dropout_rate, max_epoch, batch_size, valid_batch_size
        learning_rate = cg.lr
        dropout_rate = cg.dropout_rate
        max_epoch = cg.max_epoch
        batch_size = valid_batch_size = batch_num*seq_size

        global target_delay
        target_delay = cg.target_delay

        global lstm_cell_size, num_layers
        lstm_cell_size = cg.cell_size
        num_layers = cg.num_layers

    #                               Graph Part                                 #

    print("Graph initialization...")
    with tf.device(device):
        with tf.variable_scope("model", reuse=None):
            m_train = Model(is_training=True)
        with tf.variable_scope("model", reuse=True):
            m_valid = Model(is_training=False)

    print("Done")

    #                               Summary Part                               #

    print("Setting up summary op...")
    summary_ph = tf.placeholder(dtype=tf.float32)

    with tf.variable_scope("Training_procedure"):

        cost_summary_op = tf.summary.scalar("cost", summary_ph)
        accuracy_summary_op = tf.summary.scalar("accuracy", summary_ph)

    print("Done")

    #                               Model Save Part                            #

    print("Setting up Saver...")
    saver = tf.train.Saver()
    ckpt = tf.train.get_checkpoint_state(logs_dir)

    print("Done")

    #                               Session Part                               #

    sess_config = tf.ConfigProto(allow_soft_placement=True, log_device_placement=False)
    sess_config.gpu_options.allow_growth = True
    sess = tf.Session(config=sess_config)

    if mode is 'train':
        train_summary_writer = tf.summary.FileWriter(logs_dir + '/train/', sess.graph, max_queue=2)
        valid_summary_writer = tf.summary.FileWriter(logs_dir + '/valid/', max_queue=2)

    if ckpt and ckpt.model_checkpoint_path:  # model restore
        print("Model restored...")

        if mode is 'train':
            saver.restore(sess, ckpt.model_checkpoint_path)
        else:
            saver.restore(sess, initial_logs_dir+ckpt_name)
            # saver.restore(sess, logs_dir+ckpt_name)

            saver.save(sess, logs_dir + "/model_LSTM.ckpt", 0)  # model save

        print("Done")
    else:
        sess.run(tf.global_variables_initializer())  # if the checkpoint doesn't exist, do initialization

    if mode is 'train':
        train_data_set = dr.DataReader(input_dir, output_dir, norm_dir, target_delay=target_delay, u=u, name="train")  # training data reader initialization

    if mode is 'train':
        file_len = train_data_set.get_file_len()
        MAX_STEP = max_epoch * file_len

        print(get_num_params())

        for itr in range(MAX_STEP):

            train_inputs, train_labels = train_data_set.next_batch(seq_size)

            one_hot_labels = train_labels.reshape((-1, 1))
            one_hot_labels = dense_to_one_hot(one_hot_labels, num_classes=2)
            feed_dict = {m_train.inputs: train_inputs, m_train.labels: one_hot_labels,
                         m_train.keep_probability: dropout_rate}

            sess.run(m_train.train_op, feed_dict=feed_dict)

            if itr % 100 == 0 and itr >= 0:
                train_cost, train_accuracy, train_rate, train_pre = sess.run([m_train.cost, m_train.accuracy, m_train.lr, m_train.pred], feed_dict=feed_dict)
                # print(logits)

                print("Step: %d, train_cost: %.4f, train_accuracy=%4.4f lr=%.8f" % (itr, train_cost, train_accuracy*100, train_rate))
                pass

                train_cost_summary_str = sess.run(cost_summary_op, feed_dict={summary_ph: train_cost})
                train_accuracy_summary_str = sess.run(accuracy_summary_op, feed_dict={summary_ph: train_accuracy})
                train_summary_writer.add_summary(train_cost_summary_str, itr)  # write the train phase summary to event files
                train_summary_writer.add_summary(train_accuracy_summary_str, itr)

            if itr % file_len == 0 and itr > 0:

                saver.save(sess, logs_dir + "/model.ckpt", itr)  # model save
                print('validation start!')
                valid_accuracy, valid_cost = \
                    utils.do_validation(m_valid, sess, valid_file_dir, norm_dir, type='LSTM')

                print("valid_cost: %.4f, valid_accuracy=%4.4f" % (valid_cost, valid_accuracy * 100))
                valid_cost_summary_str = sess.run(cost_summary_op, feed_dict={summary_ph: valid_cost})
                valid_accuracy_summary_str = sess.run(accuracy_summary_op, feed_dict={summary_ph: valid_accuracy})
                valid_summary_writer.add_summary(valid_cost_summary_str, itr)  # write the train phase summary to event files
                valid_summary_writer.add_summary(valid_accuracy_summary_str, itr)
                gs.freeze_graph(prj_dir + '/logs/LSTM', prj_dir + '/saved_model/graph/LSTM',
                                'model_1/soft_pred,model_1/raw_labels')

    elif mode is 'test':

        final_softout, final_label = utils.vad_test3(m_valid, sess, valid_batch_size, test_file_dir, norm_dir, data_len,
                                                     eval_type)

        if data_len is None:
            return final_softout, final_label

        else:
            return final_softout[0:data_len, :], final_label[0:data_len, :]
Пример #3
0
def main(argv=None):
    #                               Graph Part                               #
    print("Graph initialization...")
    with tf.device(device):
        with tf.variable_scope("model", reuse=None):
            m_train = Model(is_training=True)
        with tf.variable_scope("model", reuse=True):
            m_valid = Model(is_training=False)

    print("Done")

    #                               Summary Part                             #

    print("Setting up summary op...")

    summary_ph = tf.placeholder(dtype=tf.float32)
    with tf.variable_scope("Training_procedure"):

        cost_summary_op = tf.summary.scalar("cost", summary_ph)
        accuracy_summary_op = tf.summary.scalar("accuracy", summary_ph)

    if mode is 'train':
        train_summary_writer = tf.summary.FileWriter(logs_dir + '/train/',
                                                     max_queue=2)
        valid_summary_writer = tf.summary.FileWriter(logs_dir + '/valid/',
                                                     max_queue=2)

    # summary_dic = summary_generation(valid_file_dir)

    print("Done")

    #                               Model Save Part                           #

    print("Setting up Saver...")
    saver = tf.train.Saver()
    ckpt = tf.train.get_checkpoint_state(logs_dir)
    print("Done")

    #                               Session Part                              #

    sess_config = tf.ConfigProto(allow_soft_placement=True,
                                 log_device_placement=False)
    sess_config.gpu_options.allow_growth = True
    sess = tf.Session(config=sess_config)

    if ckpt and ckpt.model_checkpoint_path:  # model restore
        print("Model restored...")

        if mode is 'train':
            saver.restore(sess, ckpt.model_checkpoint_path)
        else:
            saver.restore(sess, initial_logs_dir + ckpt_name)

        print("Done")
    else:
        sess.run(tf.global_variables_initializer()
                 )  # if the checkpoint doesn't exist, do initialization
    if mode is 'train':
        train_data_set = dr.DataReader(
            input_dir, output_dir, norm_dir, w=w, u=u,
            name="train")  # training data reader initialization

    if mode is 'train':

        for itr in range(max_epoch):

            train_inputs, train_labels = train_data_set.next_batch(batch_size)
            # imgplot = plt.imshow(train_inputs)
            # plt.show()
            one_hot_labels = train_labels.reshape((-1, 1))
            one_hot_labels = dense_to_one_hot(one_hot_labels, num_classes=2)

            feed_dict = {
                m_train.inputs: train_inputs,
                m_train.labels: one_hot_labels,
                m_train.keep_probability: dropout_rate
            }

            sess.run(m_train.train_op, feed_dict=feed_dict)

            if itr % 10 == 0 and itr >= 0:

                # train_cost, train_softpred, train_raw_labels \
                #     = sess.run([m_train.cost, m_train.softpred, m_train.raw_labels], feed_dict=feed_dict)
                # fpr, tpr, thresholds = metrics.roc_curve(train_raw_labels, train_softpred, pos_label=1)
                # train_auc = metrics.auc(fpr, tpr)

                train_cost, train_accuracy \
                    = sess.run([m_train.cost, m_train.accuracy], feed_dict=feed_dict)

                print("Step: %d, train_cost: %.4f, train_accuracy=%4.4f" %
                      (itr, train_cost, train_accuracy * 100))

                train_cost_summary_str = sess.run(
                    cost_summary_op, feed_dict={summary_ph: train_cost})
                train_accuracy_summary_str = sess.run(
                    accuracy_summary_op,
                    feed_dict={summary_ph: train_accuracy})
                train_summary_writer.add_summary(
                    train_cost_summary_str,
                    itr)  # write the train phase summary to event files
                train_summary_writer.add_summary(train_accuracy_summary_str,
                                                 itr)

            # if train_data_set.eof_checker():
            if itr % 50 == 0 and itr > 0:

                saver.save(sess, logs_dir + "/model.ckpt", itr)  # model save
                print('validation start!')
                valid_accuracy, valid_cost = \
                    utils.do_validation(m_valid, sess, valid_batch_size, valid_file_dir, norm_dir,
                                        model_config, type='DNN')

                print("valid_cost: %.4f, valid_accuracy=%4.4f" %
                      (valid_cost, valid_accuracy * 100))
                valid_cost_summary_str = sess.run(
                    cost_summary_op, feed_dict={summary_ph: valid_cost})
                valid_accuracy_summary_str = sess.run(
                    accuracy_summary_op,
                    feed_dict={summary_ph: valid_accuracy})
                valid_summary_writer.add_summary(
                    valid_cost_summary_str,
                    itr)  # write the train phase summary to event files
                valid_summary_writer.add_summary(valid_accuracy_summary_str,
                                                 itr)

                # full_evaluation(m_valid, sess, valid_batch_size, valid_file_dir, valid_summary_writer, summary_dic, itr)

    elif mode is 'test':
        # full_evaluation(m_valid, sess, valid_batch_size, test_file_dir, valid_summary_writer, summary_dic, 0)

        final_softout, final_label = utils.vad_test(m_valid, sess,
                                                    valid_batch_size,
                                                    test_file_dir, norm_dir,
                                                    data_len, eval_type)

        if data_len is None:
            return final_softout, final_label
        else:
            return final_softout[0:data_len, :], final_label[0:data_len, :]
Пример #4
0
def main(save_dir, prj_dir=None, model=None, mode=None, dev="/gpu:2"):

    #                               Configuration Part                       #
    # os.environ["CUDA_VISIBLE_DEVICES"] = '3'
    device = dev
    os.environ["CUDA_VISIBLE_DEVICES"] = device[-1]
    if mode is 'train':

        import path_setting as ps

        set_path = ps.PathSetting(prj_dir, model, save_dir)
        logs_dir = initial_logs_dir = set_path.logs_dir
        input_dir = set_path.input_dir
        output_dir = set_path.output_dir
        norm_dir = set_path.norm_dir
        valid_file_dir = set_path.valid_file_dir

        sys.path.insert(0, prj_dir + '/configure/ACAM')
        import config as cg

        global initLr, dropout_rate, max_epoch, batch_size, valid_batch_size
        initLr = cg.lr
        dropout_rate = cg.dropout_rate
        max_epoch = cg.max_epoch
        batch_size = valid_batch_size = cg.batch_size

        global w, u
        w = cg.w
        u = cg.u

        global bdnn_winlen, bdnn_inputsize, bdnn_outputsize
        bdnn_winlen = (((w - 1) / u) * 2) + 3
        bdnn_inputsize = int(bdnn_winlen * num_features)
        bdnn_outputsize = int(bdnn_winlen)

        global glimpse_hidden, bp_hidden, glimpse_out, bp_out, nGlimpses,\
            lstm_cell_size, action_hidden_1, action_hidden_2

        glimpse_hidden = cg.glimpse_hidden
        bp_hidden = cg.bp_hidden
        glimpse_out = bp_out = cg.glimpse_out
        nGlimpses = cg.nGlimpse  # 7
        lstm_cell_size = cg.lstm_cell_size
        action_hidden_1 = cg.action_hidden_1  # default : 256
        action_hidden_2 = cg.action_hidden_2  # default : 256

    #                               Graph Part                                 #

    mean_acc_list = []
    var_acc_list = []

    print('Mode : ' + mode)
    print("Graph initialization...")
    with tf.device(device):
        with tf.variable_scope("model", reuse=None):
            m_train = Model(batch_size=batch_size,
                            reuse=None,
                            is_training=True)
            # m_train(batch_size)
    with tf.device(device):
        with tf.variable_scope("model", reuse=True):
            m_valid = Model(batch_size=valid_batch_size,
                            reuse=True,
                            is_training=False)

    print("Done")

    #                               Summary Part                               #

    print("Setting up summary op...")
    summary_ph = tf.placeholder(dtype=tf.float32)

    with tf.variable_scope("Training_procedure"):

        cost_summary_op = tf.summary.scalar("cost", summary_ph)
        accuracy_summary_op = tf.summary.scalar("accuracy", summary_ph)

    # train_summary_writer = tf.summary.FileWriter(logs_dir + '/train/', max_queue=4)
    # valid_summary_writer = tf.summary.FileWriter(logs_dir + '/valid/', max_queue=4)
    # summary_dic = summary_generation(valid_file_dir)

    print("Done")

    #                               Model Save Part                            #

    print("Setting up Saver...")
    saver = tf.train.Saver()
    ckpt = tf.train.get_checkpoint_state(initial_logs_dir)
    print("Done")

    #                               Session Part                               #

    sess_config = tf.ConfigProto(allow_soft_placement=True,
                                 log_device_placement=False)
    sess_config.gpu_options.allow_growth = True
    sess = tf.Session(config=sess_config)

    if mode is 'train':
        train_summary_writer = tf.summary.FileWriter(logs_dir + '/train/',
                                                     sess.graph,
                                                     max_queue=2)
        valid_summary_writer = tf.summary.FileWriter(logs_dir + '/valid/',
                                                     max_queue=2)

    if ckpt and ckpt.model_checkpoint_path:  # model restore
        print("Model restored...")
        print(initial_logs_dir + ckpt_name)
        if mode is 'train':
            saver.restore(sess, ckpt.model_checkpoint_path)
        else:
            saver.restore(sess, initial_logs_dir + ckpt_name)
            saver.save(sess, initial_logs_dir + "/model_ACAM.ckpt",
                       0)  # model save

        print("Done")

    else:
        sess.run(tf.global_variables_initializer()
                 )  # if the checkpoint doesn't exist, do initialization

    if mode is 'train':
        train_data_set = dr.DataReader(
            input_dir, output_dir, norm_dir, w=w, u=u,
            name="train")  # training data reader initialization
    if mode is 'train':
        file_len = train_data_set.get_file_len()
        MAX_STEP = max_epoch * file_len
        print(get_num_params())

        for itr in range(MAX_STEP):

            start_time = time.time()

            train_inputs, train_labels = train_data_set.next_batch(batch_size)

            feed_dict = {
                m_train.inputs: train_inputs,
                m_train.labels: train_labels,
                m_train.keep_probability: dropout_rate
            }

            sess.run(m_train.train_op, feed_dict=feed_dict)

            if itr % 100 == 0 and itr >= 0:
                train_cost, train_reward, train_avg_b, train_rminusb, train_p_bps, train_lr, train_res \
                    = sess.run([m_train.cost, m_train.reward, m_train.avg_b, m_train.rminusb, m_train.p_bps,
                                m_train.print_lr,m_train.result]
                               , feed_dict=feed_dict)

                duration = time.time() - start_time
                print(
                    "Step: %d, cost: %.4f, accuracy: %4.4f, b: %4.4f, R-b: %4.4f, p_bps: %4.4f, lr: %7.6f (%.3f sec)"
                    % (itr, train_cost, train_reward, train_avg_b,
                       train_rminusb, train_p_bps, train_lr, duration))

                # np.save('pre/'+train_data_set.get_cur_file_name().split('/')[-1], train_res)

                train_cost_summary_str = sess.run(
                    cost_summary_op, feed_dict={summary_ph: train_cost})
                train_accuracy_summary_str = sess.run(
                    accuracy_summary_op, feed_dict={summary_ph: train_reward})
                train_summary_writer.add_summary(train_cost_summary_str, itr)
                train_summary_writer.add_summary(train_accuracy_summary_str,
                                                 itr)

            if itr % file_len == 0 and itr > 0:
                saver.save(sess, logs_dir + "/model.ckpt", itr)  # model save
                print('validation start!')
                valid_accuracy, valid_cost = \
                    utils.do_validation(m_valid, sess, valid_file_dir, norm_dir,
                                        type='ACAM')

                print("valid_cost: %.4f, valid_accuracy=%4.4f" %
                      (valid_cost, valid_accuracy * 100))
                valid_cost_summary_str = sess.run(
                    cost_summary_op, feed_dict={summary_ph: valid_cost})
                valid_accuracy_summary_str = sess.run(
                    accuracy_summary_op,
                    feed_dict={summary_ph: valid_accuracy})
                valid_summary_writer.add_summary(
                    valid_cost_summary_str,
                    itr)  # write the train phase summary to event files
                valid_summary_writer.add_summary(valid_accuracy_summary_str,
                                                 itr)
                gs.freeze_graph(prj_dir + '/logs/ACAM',
                                prj_dir + '/saved_model/graph/ACAM',
                                'model_1/logits,model_1/raw_labels')

    elif mode == 'test':

        final_softout, final_label = utils.vad_test(m_valid, sess,
                                                    valid_batch_size,
                                                    test_file_dir, norm_dir,
                                                    data_len, eval_type)
        if data_len is None:
            return final_softout, final_label
        else:
            return final_softout[0:data_len, :], final_label[0:data_len, :]
Пример #5
0
def main(prj_dir=None, model=None, mode=None):

    #                               Configuration Part                       #
    if mode is 'train':

        import path_setting as ps

        set_path = ps.PathSetting(prj_dir, model)
        logs_dir = initial_logs_dir = set_path.logs_dir
        input_dir = set_path.input_dir
        output_dir = set_path.output_dir
        norm_dir = set_path.norm_dir
        valid_file_dir = set_path.valid_file_dir

        sys.path.insert(0, prj_dir+'/configure/bDNN')
        import config as cg

        global initLr, dropout_rate, max_epoch, batch_size, valid_batch_size
        initLr = cg.lr
        dropout_rate = cg.dropout_rate
        max_epoch = cg.max_epoch
        batch_size = valid_batch_size = cg.batch_size

        global w, u
        w = cg.w
        u = cg.u

        global bdnn_winlen, bdnn_inputsize, bdnn_outputsize
        bdnn_winlen = (((w-1) / u) * 2) + 3
        bdnn_inputsize = int(bdnn_winlen * num_features)
        bdnn_outputsize = int(bdnn_winlen)

        global num_hidden_1, num_hidden_2
        num_hidden_1 = cg.num_hidden_1
        num_hidden_2 = cg.num_hidden_2

    #                               Graph Part                                 #

    print("Graph initialization...")
    with tf.device(device):
        with tf.variable_scope("model", reuse=None):
            m_train = Model(is_training=True)
        with tf.variable_scope("model", reuse=True):
            m_valid = Model(is_training=False)

    print("Done")

    #                               Summary Part                               #

    print("Setting up summary op...")
    summary_ph = tf.placeholder(dtype=tf.float32)

    with tf.variable_scope("Training_procedure"):

        cost_summary_op = tf.summary.scalar("cost", summary_ph)
        accuracy_summary_op = tf.summary.scalar("accuracy", summary_ph)

    # train_summary_writer = tf.summary.FileWriter(logs_dir + '/train/', max_queue=4)
    # valid_summary_writer = tf.summary.FileWriter(logs_dir + '/valid/', max_queue=4)
    # summary_dic = summary_generation(valid_file_dir)

    print("Done")

    #                               Model Save Part                            #

    print("Setting up Saver...")
    saver = tf.train.Saver()
    ckpt = tf.train.get_checkpoint_state(initial_logs_dir)
    print("Done")

    #                               Session Part                               #

    sess_config = tf.ConfigProto(allow_soft_placement=True, log_device_placement=False)
    sess_config.gpu_options.allow_growth = True
    sess = tf.Session(config=sess_config)

    if mode is 'train':
        train_summary_writer = tf.summary.FileWriter(logs_dir + '/train/', sess.graph, max_queue=2)
        valid_summary_writer = tf.summary.FileWriter(logs_dir + '/valid/', max_queue=2)

    if ckpt and ckpt.model_checkpoint_path:  # model restore
        print("Model restored...")

        if mode is 'train':
            saver.restore(sess, ckpt.model_checkpoint_path)
        else:
            saver.restore(sess, initial_logs_dir+ckpt_name)
            # print(initial_logs_dir)
            # saver.save(sess, initial_logs_dir + "/model_bDNN.ckpt", 0)  # model save

        print("Done")
    else:
        sess.run(tf.global_variables_initializer())  # if the checkpoint doesn't exist, do initialization

    if mode is 'train':
        train_data_set = dr.DataReader(input_dir, output_dir, norm_dir, w=w, u=u, name="train")  # training data reader initialization
    # train_data_set = dr.DataReader(input_dir, output_dir, norm_dir, w=w, u=u, name="train")  # training data reader initialization

    if mode is 'train':

        for itr in range(max_epoch):

            train_inputs, train_labels = train_data_set.next_batch(batch_size)

            feed_dict = {m_train.inputs: train_inputs, m_train.labels: train_labels,
                         m_train.keep_probability: dropout_rate}

            sess.run(m_train.train_op, feed_dict=feed_dict)

            if itr % 10 == 0 and itr >= 0:

                train_cost, logits = sess.run([m_train.cost, m_train.logits], feed_dict=feed_dict)

                result = bdnn_prediction(batch_size, logits, threshold=th)
                raw_indx = int(np.floor(train_labels.shape[1] / 2))
                raw_labels = train_labels[:, raw_indx]
                raw_labels = raw_labels.reshape((-1, 1))
                train_accuracy = np.equal(result, raw_labels)
                train_accuracy = train_accuracy.astype(int)
                train_accuracy = np.sum(train_accuracy) / batch_size  # change to mean...

                print("Step: %d, train_cost: %.4f, train_accuracy=%4.4f" % (itr, train_cost, train_accuracy*100))

                train_cost_summary_str = sess.run(cost_summary_op, feed_dict={summary_ph: train_cost})
                train_accuracy_summary_str = sess.run(accuracy_summary_op, feed_dict={summary_ph: train_accuracy})
                train_summary_writer.add_summary(train_cost_summary_str, itr)  # write the train phase summary to event files
                train_summary_writer.add_summary(train_accuracy_summary_str, itr)

            # if train_data_set.eof_checker():
            if itr % 50 == 0 and itr > 0:

                saver.save(sess, logs_dir + "/model.ckpt", itr)  # model save
                print('validation start!')

                valid_accuracy, valid_cost = \
                    utils.do_validation(m_valid, sess, valid_file_dir, norm_dir, type='bDNN')

                print("valid_cost: %.4f, valid_accuracy=%4.4f" % (valid_cost, valid_accuracy * 100))
                valid_cost_summary_str = sess.run(cost_summary_op, feed_dict={summary_ph: valid_cost})
                valid_accuracy_summary_str = sess.run(accuracy_summary_op, feed_dict={summary_ph: valid_accuracy})
                valid_summary_writer.add_summary(valid_cost_summary_str, itr)  # write the train phase summary to event files
                valid_summary_writer.add_summary(valid_accuracy_summary_str, itr)

                # full_evaluation(m_valid, sess, valid_batch_size, valid_file_dir, valid_summary_writer, summary_dic, itr)
                # train_data_set.reader_initialize()
                # print('Train data reader was initialized!')  # initialize eof flag & num_file & start index

    elif mode is 'test':
        # full_evaluation(m_valid, sess, valid_batch_size, test_file_dir, valid_summary_writer, summary_dic, 0)

        final_softout, final_label = utils.vad_test(m_valid, sess, valid_batch_size, test_file_dir, norm_dir, data_len,
                                                    eval_type)

        if data_len is None:
            return final_softout, final_label
        else:
            return final_softout[0:data_len, :], final_label[0:data_len, :]
Пример #6
0
def main(prj_dir=None, model=None, mode=None):
    #                               Configuration Part                       #
    if mode is 'train':
        import path_setting as ps

        set_path = ps.PathSetting(prj_dir, model)
        logs_dir = initial_logs_dir = set_path.logs_dir
        input_dir = set_path.input_dir
        output_dir = set_path.output_dir
        norm_dir = set_path.norm_dir
        valid_file_dir = set_path.valid_file_dir

        sys.path.insert(0, prj_dir+'/configure/LSTM')
        import config as cg

        global seq_size, batch_num

        seq_size = cg.seq_len
        batch_num = cg.num_batches

        global learning_rate, dropout_rate, max_epoch, batch_size, valid_batch_size
        learning_rate = cg.lr
        dropout_rate = cg.dropout_rate
        max_epoch = cg.max_epoch
        batch_size = valid_batch_size = batch_num*seq_size

        global target_delay
        target_delay = cg.target_delay

        global lstm_cell_size, num_layers
        lstm_cell_size = cg.cell_size
        num_layers = cg.num_layers

    #                               Graph Part                                 #

    print("Graph initialization...")
    with tf.device(device):
        with tf.variable_scope("model", reuse=None):
            m_train = Model(is_training=True)
        with tf.variable_scope("model", reuse=True):
            m_valid = Model(is_training=False)

    print("Done")

    #                               Summary Part                               #

    print("Setting up summary op...")
    summary_ph = tf.placeholder(dtype=tf.float32)

    with tf.variable_scope("Training_procedure"):

        cost_summary_op = tf.summary.scalar("cost", summary_ph)
        accuracy_summary_op = tf.summary.scalar("accuracy", summary_ph)

    # train_summary_writer = tf.summary.FileWriter(logs_dir + '/train/', max_queue=4)
    # valid_summary_writer = tf.summary.FileWriter(logs_dir + '/valid/', max_queue=4)
    # summary_dic = summary_generation(valid_file_dir)

    print("Done")

    #                               Model Save Part                            #

    print("Setting up Saver...")
    saver = tf.train.Saver()
    ckpt = tf.train.get_checkpoint_state(logs_dir + '/LSTM')

    print("Done")

    #                               Session Part                               #

    sess_config = tf.ConfigProto(allow_soft_placement=True, log_device_placement=False)
    sess_config.gpu_options.allow_growth = True
    sess = tf.Session(config=sess_config)

    if mode is 'train':
        train_summary_writer = tf.summary.FileWriter(logs_dir + '/train/', sess.graph, max_queue=2)
        valid_summary_writer = tf.summary.FileWriter(logs_dir + '/valid/', max_queue=2)

    if ckpt and ckpt.model_checkpoint_path:  # model restore
        print("Model restored...")

        if mode is 'train':
            saver.restore(sess, ckpt.model_checkpoint_path)
        else:
            saver.restore(sess, initial_logs_dir+ckpt_name)
            # saver.restore(sess, logs_dir+ckpt_name)

            saver.save(sess, logs_dir + "/model_LSTM.ckpt", 0)  # model save

        print("Done")
    else:
        sess.run(tf.global_variables_initializer())  # if the checkpoint doesn't exist, do initialization

    if mode is 'train':
        train_data_set = dr.DataReader(input_dir, output_dir, norm_dir, target_delay=target_delay, u=u, name="train")  # training data reader initialization

    # train_data_set = dr.DataReader(input_dir, output_dir, norm_dir, target_delay=target_delay, u=u, name="train")  # training data reader initialization

    if mode is 'train':

        for itr in range(max_epoch):

            train_inputs, train_labels = train_data_set.next_batch(batch_size)
            one_hot_labels = train_labels.reshape((-1, 1))
            one_hot_labels = dense_to_one_hot(one_hot_labels, num_classes=2)
            feed_dict = {m_train.inputs: train_inputs, m_train.labels: one_hot_labels,
                         m_train.keep_probability: dropout_rate}

            sess.run(m_train.train_op, feed_dict=feed_dict)

            if itr % 10 == 0 and itr >= 0:
                train_cost, train_accuracy = sess.run([m_train.cost, m_train.accuracy], feed_dict=feed_dict)

                print("Step: %d, train_cost: %.4f, train_accuracy=%4.4f" % (itr, train_cost, train_accuracy*100))

                train_cost_summary_str = sess.run(cost_summary_op, feed_dict={summary_ph: train_cost})
                train_accuracy_summary_str = sess.run(accuracy_summary_op, feed_dict={summary_ph: train_accuracy})
                train_summary_writer.add_summary(train_cost_summary_str, itr)  # write the train phase summary to event files
                train_summary_writer.add_summary(train_accuracy_summary_str, itr)

            # if train_data_set.eof_checker():
            if itr % 50 == 0 and itr > 0:

                saver.save(sess, logs_dir + "/model.ckpt", itr)  # model save
                print('validation start!')
                valid_accuracy, valid_cost = \
                    utils.do_validation(m_valid, sess, valid_file_dir, norm_dir, type='LSTM')

                print("valid_cost: %.4f, valid_accuracy=%4.4f" % (valid_cost, valid_accuracy * 100))
                valid_cost_summary_str = sess.run(cost_summary_op, feed_dict={summary_ph: valid_cost})
                valid_accuracy_summary_str = sess.run(accuracy_summary_op, feed_dict={summary_ph: valid_accuracy})
                valid_summary_writer.add_summary(valid_cost_summary_str, itr)  # write the train phase summary to event files
                valid_summary_writer.add_summary(valid_accuracy_summary_str, itr)

                # mean_acc = full_evaluation(m_valid, sess, valid_batch_size, valid_file_dir,
                #                            valid_summary_writer, summary_dic, itr)
            # if mean_acc > 0.968:
            #     print('finish!!')
            #     break
                # train_data_set.reader_initialize()
                # print('Train data reader was initialized!')  # initialize eof flag & num_file & start index

    elif mode is 'test':

        final_softout, final_label = utils.vad_test3(m_valid, sess, valid_batch_size, test_file_dir, norm_dir, data_len,
                                                     eval_type)

        if data_len is None:

            return final_softout, final_label

        else:

            return final_softout[0:data_len, :], final_label[0:data_len, :]