def reconstr_nnfbp( target_path , output_path , filein , angles , ctr , 
                    weights , offsets , minIn , maxIn , NHidden , filters ):  
    ##  Read low-quality sinogram
    sino = io.readImage( target_path + filein ).astype( myfloat )
    nang , npix = sino.shape
    
        
    ##  Allocate array for reconstruction
    reco = np.zeros( ( npix , npix ) , dtype=myfloat ) 
        
    
    ##  Do the required multiple reconstructions
    for i in xrange( NHidden ):
        filt = filters[i,0:filters.shape[1]]
        hidRec = utils.fbp( sino , angles , [ctr,0.0] , filt )
        reco += weights[i] * sigmoid( hidRec - offsets[i] )
        
        
    ##  Apply last sigmoid
    reco = sigmoid( reco - weights[-1] )

        
    ##  Adjust image range
    reco = 2 * ( reco - 0.25 ) * ( maxIn - minIn ) + minIn


    ##  Save reconstruction
    ext     = filein[len(filein)-4:]
    fileout = output_path + filein[:len(filein)-4] + '_nnreco' + ext
    io.writeImage( fileout , reco )
    print( '\nSaving NN-FBP reconstruction in:\n' , fileout )
    
    return
Пример #2
0
def main(args):
    if args.use_cuda:
        print("Using GPU")
    else:
        print("Using CPU")
    geo_full = build_geo(args.full_view)
    geo_sparse = build_geo(args.sparse_view)

    datasets = BuildDataSet(args.data_root_path, args.test_folder, geo_full,
                            geo_sparse, None, "test")

    data_length = len(datasets)
    if not data_length == args.data_length:
        print("Args.data_length is wrong!")
        sys.exit(0)

    # s_sparse = 0
    # m_sparse = 0
    # p_sparse = 0
    s_inter = 0
    m_inter = 0
    p_inter = 0
    s_new = 0
    m_new = 0
    p_new = 0
    for i in range(224):
        print("Testing sample {}/224".format(i))
        sample = datasets[i]
        image_true = Any2One(sample["image_true"])
        image_full = Any2One(sample["image_full"])
        image_sparse = Any2One(sample["image_sparse"])
        image_inter = Any2One(sample["image_inter"])
        sinogram_full = sample["sinogram_full"]
        sinogram_sparse = sample["sinogram_sparse"]
        sinogram_inter = sample["sinogram_inter"]

        # sinogram_new = SinoInter(sinogram_inter, geo_full, -2, "sinogram_LineInter", "z")
        sinogram_new = newinter(sinogram_sparse)
        image_new = Any2One(fbp(sinogram_new, geo_full))

        # ssim, mse, psnr = ssim_mse_psnr(image_full, image_sparse)
        # s_sparse = s_sparse + ssim
        # m_sparse = m_sparse + mse
        # p_sparse = p_sparse + psnr
        ssim, mse, psnr = ssim_mse_psnr(image_full, image_inter)
        s_inter = s_inter + ssim
        m_inter = m_inter + mse
        p_inter = p_inter + psnr
        ssim, mse, psnr = ssim_mse_psnr(image_full, image_new)
        s_new = s_new + ssim
        m_new = m_new + mse
        p_new = p_new + psnr

    # print("Sparse:", s_sparse/224, m_sparse/224, p_sparse/224)
    print("Inter:", s_inter / 224, m_inter / 224, p_inter / 224)
    print("New:", s_new / 224, m_new / 224, p_new / 224)
Пример #3
0
def reconstr_filter_custom(sino, angles, ctr, filt_custom, picked, nhh, l):
    ##  Prepare filter
    n = len(filt_custom)
    nh = np.int(0.5 * n)
    filt = np.zeros(len(filt_custom), dtype=myfloat)
    filt[::2] = filt_custom[:nh]

    ##  Reconstruction
    reco = utils.fbp(sino, angles, [ctr, 0.0], filt)
    #import myImageDisplay as dis
    #dis.plot( reco , 'Reconstr j='+str(ind) )

    ##  Pick up only selected pixels
    #reco = reco[ picked ]

    reco = reco[nhh - l:nhh + l, nhh - l:nhh + l].reshape(-1)

    return reco
Пример #4
0
def main(args):
    if args.use_cuda:
        print("Using GPU")
    else:
        print("Using CPU")

    geo_full = build_geo(args.full_view)
    geo_sparse = build_geo(args.sparse_view)

    result_path_1 = args.root_path + "/IterDa/results/Iter_1/v3/model/IterDa_E199_val_Best.pth"
    model_i1 = torch.load(result_path_1, map_location=torch.device('cpu'))

    datasets = BuildDataSet(args.data_root_path, args.test_folder, geo_full, geo_sparse, None, "test")
    sample = datasets[0]  
    image_true = sample["image_true"] 
    image_full = sample["image_full"] 
    image_sparse = sample["image_sparse"] 
    sinogram_sparse = sample["sinogram_sparse"]
    sinogram_full = sample["sinogram_full"]

    image_pred = pred_sample(image_sparse, model_i1)
    sinogram_full_pred = project(image_pred, geo_full)
    sinogram_sparse_pred = sparse_view_f(sinogram_full_pred, geo_full["sino_views"], geo_sparse["sino_views"])

    sinogram_updata = updata_sinogram(sinogram_sparse, sinogram_full_pred)
    image_updata = fbp(sinogram_updata, geo_full)

    # plt.figure()
    # plt.subplot(131), plt.xticks([]), plt.yticks([]), plt.imshow(sinogram_sparse, cmap="gray"),       plt.title("(a)", y=-2)
    # plt.subplot(132), plt.xticks([]), plt.yticks([]), plt.imshow(sinogram_sparse_pred, cmap="gray"),  plt.title("(b)", y=-2)
    # plt.subplot(133), plt.xticks([]), plt.yticks([]), plt.imshow(sinogram_sparse - sinogram_sparse_pred, cmap="gray"), plt.title("(c)", y=-2)
    # plt.savefig("V:/users/gy/MyProject/Resul/Tred/Image/image4-3.png")
    # plt.show()
    plt.figure()
    plt.subplot(131), plt.xticks([]), plt.yticks([]), plt.imshow(image_full, cmap="gray"),       plt.title("(a)", y=-2)
    plt.subplot(132), plt.xticks([]), plt.yticks([]), plt.imshow(image_pred, cmap="gray"),  plt.title("(b)", y=-2)
    plt.subplot(133), plt.xticks([]), plt.yticks([]), plt.imshow(image_updata, cmap="gray"), plt.title("(c)", y=-2)
    # plt.savefig("V:/users/gy/MyProject/Resul/Tred/Image/image4-3.png")
    plt.show()
    ssim,se,psnr = ssim_mse_psnr(Any2One(image_full), Any2One(image_pred))
    print("Pred:", ssim,se,psnr)
    ssim,se,psnr = ssim_mse_psnr(Any2One(image_full), Any2One(image_updata))
    print("Updata:", ssim,se,psnr)
    print("Run Done")
def reconstr_filter_custom( sino , angles , ctr , filt_custom , picked , 
                            debug , train_path , filein , ind ):
    ##  Prepare filter
    n         = len( filt_custom )
    nh        = np.int( 0.5 * n )
    filt      = np.zeros( len( filt_custom ) , dtype=myfloat )
    filt[::2] = filt_custom[:nh]
      
    ##  Reconstruction
    reco = utils.fbp( sino , angles , [ctr,0.0] , filt )
    
    ##  Debugging save high- and low-quality reconstructions
    if debug is True:
        filedbg = filein
        ext     = filedbg[len(filedbg)-4:]
        filedbg += '_lq0' + str( ind ) + ext
        io.writeImage( train_path + filedbg , reco )    
    
    ##  Pick up only selected pixels
    reco = reco[ picked ]  
    
    return reco
def create_training_file( input_path , train_path , filein , angles , npix_train_slice , 
                          idx , nang_lq , ctr_hq , nfilt , filt_custom , filt , debug ):
    ##  Read high-quality sinogram
    sino_hq = io.readImage( input_path + filein ).astype( myfloat )
    
    ##  Reconstruct high-quality sinogram with standard filter
    params = utils.select_filter( ctr_hq , filt )
    reco_hq = utils.fbp( sino_hq , angles , params , None )

    ##  Debugging save high- and low-quality reconstructions
    if debug is True:
        filedbg = filein
        ext     = filedbg[len(filedbg)-4:]
        filedbg += '_hq' + ext
        io.writeImage( train_path + filedbg , reco_hq )
        
    ##  Create output training array
    train_data = np.zeros( ( npix_train_slice , nfilt+1 ) , dtype=myfloat ) 
        
    ##  Randomly select training pixels
    picked = utils.getPickedIndices( idx , npix_train_slice )
    
    ##  Save validation data
    train_data[:,-1] = reco_hq[picked]
        
    ##  Downsample sinogram
    sino_lq , angles_lq = utils.downsample_sinogram_angles( sino_hq , angles , nang_lq )
    
    ##  Reconstruct low-quality sinograms with customized filters
    for j in range( nfilt ):
        train_data[:,j] = reconstr_filter_custom( sino_lq , angles_lq , ctr_hq , filt_custom[j,:] , 
                                                  picked , debug , train_path , filein , j )

    ##  Save training data
    filename = filein
    fileout  = train_path + filename[:len(filename)-4] + '_train.npy'
    np.save( fileout , train_data )
    print( '\nTraining data saved in:\n', fileout )
Пример #7
0
def train(dataloaders, geo_full, option, zOf, ref, weg):
    ssim_all = 0
    mse_all = 0
    psnr_all = 0
    for i, batch in enumerate(dataloaders):
        if i < 10:
            print("Sample {}/{}".format(i + 1, 224))
            image_full = batch[ref][0].numpy()
            sinogram_inter = batch["sinogram_inter"][0].numpy()

            sinogram_new = SinoInter(sinogram_inter, geo_full, weg, option,
                                     zOf)
            image_new = fbp(sinogram_new, geo_full)
            ssim, mse, psnr = ssim_mse_psnr(image_full, image_new)
            ssim_all = ssim_all + ssim
            mse_all = mse_all + mse
            psnr_all = psnr_all + psnr
        else:
            pass
    ssim_avg = ssim_all / 224
    mse_avg = mse_all / 224
    psnr_avg = psnr_all / 224
    return ssim_avg, mse_avg, psnr_avg
Пример #8
0
def main():
    ##  Initial print
    print('\n')
    print('########################################################')
    print('###              CREATING TRAINING DATASET           ###')
    print('########################################################')
    print('\n')

    ##  Read config file
    if len(sys.argv) < 2:
        sys.exit('\nERROR: Missing input config file .cfg!\n')
    else:
        cfg_file = open(sys.argv[1], 'r')
        exec(cfg_file)
        cfg_file.close()

    ##  Get list of input files
    cwd = os.getcwd()

    input_path = utils.analyze_path(input_path, mode='check')

    os.chdir(input_path)
    file_list = []
    file_list.append(sorted(glob.glob('*' + input_files_hq + '*')))
    os.chdir(cwd)

    nfiles = len(file_list[0])
    if nfiles == 0:
        sys.exit('\nERROR: No file *' + input_files_hq + '* found!\n')

    train_path = utils.analyze_path(train_path, mode='create')

    print('\nInput data folder:\n', input_path)
    print('\nTrain data folder:\n', train_path)
    print('\nInput high-quality sinograms: ', nfiles)

    ##  Read one file
    sino = io.readImage(input_path + file_list[0][0])
    nang, npix = sino.shape
    print('\nSinogram(s) with ', nang, ' views X ', npix, ' pixels')

    ##  Create array of projection angles
    angles = utils.create_projection_angles(nang=nang)

    ##  Compute number of views for low-quality training sinograms
    factor = nang / (nang_lq * 1.0)
    print('\nDownsampling factor for training sinograms: ', factor)

    ##  Create customized filters
    print('\nCreating customized filters ....')
    filt_size = 2 * (2**int(np.ceil(np.log2(npix))))
    filt_custom = utils.generateFilterBasis(filt_size, 2)
    nfilt = filt_custom.shape[0]

    ##  Region of interest to select training data
    idx = utils.getIDX(npix, roi_l, roi_r, roi_b, roi_t)
    nh = np.int(npix * 0.5)
    l = np.abs(roi_l)

    ##  Create training dataset
    print('\nCreating training dataset ....', end='')

    ncores_avail = mproc.cpu_count
    if ncores > ncores_avail:
        ncores = ncores_avail

    for i in range(nfiles):
        ##  Read high-quality sinogram
        sino_hq = io.readImage(input_path + file_list[0][i]).astype(myfloat)

        ##  Reconstruct high-quality sinogram with standard filter
        reco_hq = utils.fbp(sino_hq, angles, [ctr_hq, 1.0], None)

        ##  Create output training array
        train_data = np.zeros((npix_train_slice, nfilt + 1), dtype=myfloat)

        ##  Randomly select training pixels
        picked = utils.getPickedIndices(idx, npix_train_slice)

        ##  Save validation data
        #train_data[:,-1] = reco_hq[picked]
        train_data[:, -1] = reco_hq[nh - l:nh + l, nh - l:nh + l].reshape(-1)

        ##  Downsample sinogram
        sino_lq, angles_lq = utils.downsample_sinogram_angles(
            sino_hq, angles, nang_lq)

        ##  Reconstruct low-quality sinograms with customized filters
        #pool = mproc.Pool( processes=ncores )
        #results = [ pool.apply_async( reconstr_filter_custom ,
        #                              args=( sino_lq , angles_lq , ctr_hq , filt_custom[j,:] , picked ) ) \
        #                              for j in range( nfilt ) ]
        #train_data[:,:nfilt] = np.array( [ res.get() for res in results ] ).reshape( npix_train_slice , nfilt )
        #pool.close()
        #pool.join()

        for j in range(nfilt):
            train_data[:,
                       j] = reconstr_filter_custom(sino_lq, angles_lq, ctr_hq,
                                                   filt_custom[j, :], picked,
                                                   nh, l)

        ##  Save training data
        filename = file_list[0][i]
        fileout = train_path + filename[:len(filename) - 4] + '_train.npy'
        np.save(fileout, train_data)
        print('\nTraining data saved in:\n', fileout)

        #filename = file_list[0][i]
        #fileout  = train_path + filename[:len(filename)-4] + '_reco.DMP'
        #io.writeImage( fileout , reco_hq )

    print('\n')