Пример #1
0
    def read_beamfits(self, filename, run_check=True, check_extra=True,
                      run_check_acceptability=True):
        """
        Read the data from a beamfits file.

        Args:
            filename: The beamfits file to write to.
            run_check: Option to check for the existence and proper shapes of
                required parameters after reading in the file. Default is True.
            check_extra: Option to check optional parameters as well as
                required ones. Default is True.
            run_check_acceptability: Option to check acceptability of the values of
                required parameters after reading in the file. Default is True.
        """
        F = fits.open(filename)
        primary_hdu = F[0]
        primary_header = primary_hdu.header.copy()
        hdunames = uvutils.fits_indexhdus(F)  # find the rest of the tables

        data = primary_hdu.data

        # only support simple antenna_types for now.
        # support for phased arrays should be added
        self.set_simple()

        self.beam_type = primary_header.pop('BTYPE', None)
        if self.beam_type is not None:
            self.beam_type = self.beam_type.lower()
        else:
            bunit = primary_header.pop('BUNIT', None)
            if bunit is not None and bunit.lower().strip() == 'jy/beam':
                self.beam_type = 'power'

        if self.beam_type == 'intensity':
            self.beam_type = 'power'

        n_dimensions = primary_header.pop('NAXIS')
        ctypes = [primary_header[ctype] for ctype in (key for key in primary_header
                                                      if 'ctype' in key.lower())]

        self.pixel_coordinate_system = primary_header.pop('COORDSYS', None)
        if self.pixel_coordinate_system is None:
            if ctypes[0] == 'Pix_Ind':
                self.pixel_coordinate_system = 'healpix'
            else:
                for cs, coords in self.coordinate_system_dict.iteritems():
                    if coords == ctypes[0:2]:
                        coord_list = ctypes[0:2]
                        self.pixel_coordinate_system = cs
        else:
            if self.pixel_coordinate_system == 'healpix':
                if ctypes[0] != 'Pix_Ind':
                    raise ValueError('First axis must be "Pix_Ind" for healpix beams')
            else:
                coord_list = ctypes[0:2]
                if coord_list != self.coordinate_system_dict[self.pixel_coordinate_system]:
                    raise ValueError('Coordinate axis list does not match coordinate system')

        if self.pixel_coordinate_system == 'healpix':
            # get pixel values out of HPX_IND extension
            hpx_hdu = F[hdunames['HPX_INDS']]
            self.Npixels = hpx_hdu.header['NAXIS2']
            hpx_data = hpx_hdu.data
            self.pixel_array = hpx_data['hpx_inds']

            ax_nums = hpx_primary_ax_nums
            self.nside = primary_header.pop('NSIDE', None)
            self.ordering = primary_header.pop('ORDERING', None)
            data_Npixels = primary_header.pop('NAXIS' + str(ax_nums['pixel']))
            if data_Npixels != self.Npixels:
                raise ValueError('Number of pixels in HPX_IND extension does '
                                 'not match number of pixels in data array')
        else:
            ax_nums = reg_primary_ax_nums
            self.Naxes1 = primary_header.pop('NAXIS' + str(ax_nums['img_ax1']))
            self.Naxes2 = primary_header.pop('NAXIS' + str(ax_nums['img_ax2']))

            self.axis1_array = uvutils.fits_gethduaxis(primary_hdu, ax_nums['img_ax1'])
            self.axis2_array = uvutils.fits_gethduaxis(primary_hdu, ax_nums['img_ax2'])

        n_efield_dims = max([ax_nums[key] for key in ax_nums])

        if self.beam_type == 'power':
            self.data_array = data
            if primary_header.pop('CTYPE' + str(ax_nums['feed_pol'])).lower().strip() == 'stokes':
                self.Npols = primary_header.pop('NAXIS' + str(ax_nums['feed_pol']))
            self.polarization_array = np.int32(uvutils.fits_gethduaxis(primary_hdu,
                                                                       ax_nums['feed_pol']))
            self.set_power()
        elif self.beam_type == 'efield':
            self.set_efield()
            if n_dimensions < n_efield_dims:
                raise (ValueError, 'beam_type is efield and data dimensionality is too low')
            complex_arrs = np.split(data, 2, axis=0)
            self.data_array = np.squeeze(complex_arrs[0] + 1j * complex_arrs[1], axis=0)
            if primary_header.pop('CTYPE' + str(ax_nums['feed_pol'])).lower().strip() == 'feedind':
                self.Nfeeds = primary_header.pop('NAXIS' + str(ax_nums['feed_pol']))
            feedlist = primary_header.pop('FEEDLIST', None)
            if feedlist is not None:
                self.feed_array = np.array(feedlist[1:-1].split(', '))
        else:
            raise ValueError('Unknown beam_type: {type}, beam_type should be '
                             '"efield" or "power".'.format(type=self.beam_type))

        self.data_normalization = primary_header.pop('NORMSTD', None)

        self.telescope_name = primary_header.pop('TELESCOP')
        self.feed_name = primary_header.pop('FEED', None)
        self.feed_version = primary_header.pop('FEEDVER', None)
        self.model_name = primary_header.pop('MODEL', None)
        self.model_version = primary_header.pop('MODELVER', None)

        # shapes
        if primary_header.pop('CTYPE' + str(ax_nums['freq'])).lower().strip() == 'freq':
            self.Nfreqs = primary_header.pop('NAXIS' + str(ax_nums['freq']))

        if n_dimensions > ax_nums['spw'] - 1:
            if primary_header.pop('CTYPE' + str(ax_nums['spw'])).lower().strip() == 'if':
                self.Nspws = primary_header.pop('NAXIS' + str(ax_nums['spw']), None)
                # subtract 1 to be zero-indexed
                self.spw_array = uvutils.fits_gethduaxis(primary_hdu, ax_nums['spw']) - 1

        if n_dimensions > ax_nums['basisvec'] - 1:
            if primary_header.pop('CTYPE' + str(ax_nums['basisvec'])).lower().strip() == 'vecind':
                self.Naxes_vec = primary_header.pop('NAXIS' + str(ax_nums['basisvec']), None)

        if (self.Nspws is None or self.Naxes_vec is None) and self.beam_type == 'power':
            if self.Nspws is None:
                self.Nspws = 1
                self.spw_array = np.array([0])
            if self.Naxes_vec is None:
                self.Naxes_vec = 1

            # add extra empty dimensions to data_array as appropriate
            while len(self.data_array.shape) < n_efield_dims - 1:
                self.data_array = np.expand_dims(self.data_array, axis=0)

        self.freq_array = uvutils.fits_gethduaxis(primary_hdu, ax_nums['freq'])
        self.freq_array.shape = (self.Nspws,) + self.freq_array.shape

        self.history = str(primary_header.get('HISTORY', ''))
        if not uvutils.check_history_version(self.history, self.pyuvdata_version_str):
            self.history += self.pyuvdata_version_str
        while 'HISTORY' in primary_header.keys():
            primary_header.remove('HISTORY')

        # remove standard FITS header items that are still around
        std_fits_substrings = ['SIMPLE', 'BITPIX', 'EXTEND', 'BLOCKED',
                               'GROUPS', 'PCOUNT', 'BSCALE', 'BZERO', 'NAXIS',
                               'PTYPE', 'PSCAL', 'PZERO', 'CTYPE', 'CRVAL',
                               'CRPIX', 'CDELT', 'CROTA', 'CUNIT']
        for key in primary_header.keys():
            for sub in std_fits_substrings:
                if key.find(sub) > -1:
                    primary_header.remove(key)

        # find all the remaining header items and keep them as extra_keywords
        for key in primary_header:
            if key == 'COMMENT':
                self.extra_keywords[key] = str(primary_header.get(key))
            elif key != '':
                self.extra_keywords[key] = primary_header.get(key)

        if self.beam_type == 'efield':
            # read BASISVEC HDU
            basisvec_hdu = F[hdunames['BASISVEC']]
            self.basis_vector_array = basisvec_hdu.data
            basisvec_header = basisvec_hdu.header

            if self.pixel_coordinate_system == 'healpix':
                basisvec_ax_nums = hxp_basisvec_ax_nums
                if basisvec_header['CTYPE' + str(basisvec_ax_nums['pixel'])] != 'Pix_Ind':
                    raise ValueError('First axis in BASISVEC HDU must be "Pix_Ind" for healpix beams')

                basisvec_Npixels = basisvec_header.pop('NAXIS' + str(basisvec_ax_nums['pixel']))

                if basisvec_Npixels != self.Npixels:
                    raise ValueError('Number of pixels in BASISVEC HDU does not match '
                                     'primary HDU')
            else:
                basisvec_ax_nums = reg_basisvec_ax_nums
                basisvec_coord_list = [basisvec_header['CTYPE' + str(basisvec_ax_nums['img_ax1'])],
                                       basisvec_header['CTYPE' + str(basisvec_ax_nums['img_ax2'])]]
                basisvec_axis1_array = uvutils.fits_gethduaxis(basisvec_hdu,
                                                               basisvec_ax_nums['img_ax1'])
                basisvec_axis2_array = uvutils.fits_gethduaxis(basisvec_hdu,
                                                               basisvec_ax_nums['img_ax2'])
                if not np.all(basisvec_axis1_array == self.axis1_array):
                    raise ValueError('First image axis in BASISVEC HDU does not match '
                                     'primary HDU')
                if not np.all(basisvec_axis2_array == self.axis2_array):
                    raise ValueError('Second image axis in BASISVEC HDU does not '
                                     'match primary HDU')
                if basisvec_coord_list != coord_list:
                    raise ValueError('Pixel coordinate list in BASISVEC HDU does not '
                                     'match primary HDU')

            basisvec_Naxes_vec = basisvec_header['NAXIS' + str(basisvec_ax_nums['basisvec'])]

            basisvec_cs = basisvec_header['COORDSYS']
            if basisvec_cs != self.pixel_coordinate_system:
                raise ValueError('Pixel coordinate system in BASISVEC HDU does '
                                 'not match primary HDU')

            if basisvec_Naxes_vec != self.Naxes_vec:
                raise ValueError('Number of vector coordinate axes in BASISVEC '
                                 'HDU does not match primary HDU')

        # check to see if BANDPARM HDU exists and read it out if it does
        if 'BANDPARM' in hdunames:
            bandpass_hdu = F[hdunames['BANDPARM']]
            bandpass_header = bandpass_hdu.header.copy()
            self.reference_input_impedance = bandpass_header.pop('refzin', None)
            self.reference_output_impedance = bandpass_header.pop('refzout', None)

            freq_data = bandpass_hdu.data
            columns = [c.name for c in freq_data.columns]
            self.bandpass_array = freq_data['bandpass']
            self.bandpass_array = self.bandpass_array[np.newaxis, :]

            if 'rx_temp' in columns:
                self.receiver_temperature_array = freq_data['rx_temp']
                self.receiver_temperature_array = self.receiver_temperature_array[np.newaxis, :]
            if 'loss' in columns:
                self.loss_array = freq_data['loss']
                self.loss_array = self.loss_array[np.newaxis, :]
            if 'mismatch' in columns:
                self.mismatch_array = freq_data['mismatch']
                self.mismatch_array = self.mismatch_array[np.newaxis, :]
            if 's11' in columns:
                s11 = freq_data['s11']
                s12 = freq_data['s12']
                s21 = freq_data['s21']
                s22 = freq_data['s22']
                self.s_parameters = np.zeros((4, 1, len(s11)))
                self.s_parameters[0, 0, :] = s11
                self.s_parameters[1, 0, :] = s12
                self.s_parameters[2, 0, :] = s21
                self.s_parameters[3, 0, :] = s22
        else:
            # no bandpass information, set it to an array of ones
            self.bandpass_array = np.zeros((self.Nspws, self.Nfreqs)) + 1.

        if run_check:
            self.check(check_extra=check_extra,
                       run_check_acceptability=run_check_acceptability)
Пример #2
0
    def read_calfits(self,
                     filename,
                     run_check=True,
                     check_extra=True,
                     run_check_acceptability=True,
                     strict_fits=False):
        """
        Read data from a calfits file.

        Args:
            filename: The calfits file to read to.
            run_check: Option to check for the existence and proper shapes of
                parameters after reading in the file. Default is True.
            check_extra: Option to check optional parameters as well as required
                ones. Default is True.
            run_check_acceptability: Option to check acceptable range of the values of
                parameters after reading in the file. Default is True.
        strict_fits: boolean
            If True, require that the data axes have cooresponding NAXIS, CRVAL,
            CDELT and CRPIX keywords. If False, allow CRPIX to be missing and
            set it equal to zero and allow the CRVAL for the spw directions to
            be missing and set it to zero. This keyword exists to support old
            calfits files that were missing many CRPIX and CRVAL keywords.
            Default is False.
        """
        F = fits.open(filename)
        data = F[0].data
        hdr = F[0].header.copy()
        hdunames = uvutils.fits_indexhdus(F)

        anthdu = F[hdunames['ANTENNAS']]
        self.Nants_telescope = anthdu.header['NAXIS2']
        antdata = anthdu.data
        self.antenna_names = map(str, antdata['ANTNAME'])
        self.antenna_numbers = map(int, antdata['ANTINDEX'])
        self.ant_array = np.array(map(int, antdata['ANTARR']))
        if np.min(self.ant_array) < 0:
            # ant_array was shorter than the other columns, so it was padded with -1s.
            # Remove the padded entries.
            self.ant_array = self.ant_array[np.where(self.ant_array >= 0)[0]]

        self.channel_width = hdr.pop('CHWIDTH')
        self.integration_time = hdr.pop('INTTIME')
        self.telescope_name = hdr.pop('TELESCOP')
        self.history = str(hdr.get('HISTORY', ''))

        if not uvutils.check_history_version(self.history,
                                             self.pyuvdata_version_str):
            if self.history.endswith('\n'):
                self.history += self.pyuvdata_version_str
            else:
                self.history += '\n' + self.pyuvdata_version_str

        while 'HISTORY' in hdr.keys():
            hdr.remove('HISTORY')
        self.time_range = map(float, hdr.pop('TMERANGE').split(','))
        self.gain_convention = hdr.pop('GNCONVEN')
        self.x_orientation = hdr.pop('XORIENT')
        self.cal_type = hdr.pop('CALTYPE')
        if self.cal_type == 'delay':
            self.freq_range = map(float, hdr.pop('FRQRANGE').split(','))
        else:
            if 'FRQRANGE' in hdr:
                self.freq_range = map(float, hdr.pop('FRQRANGE').split(','))
        if 'OBSERVER' in hdr:
            self.observer = hdr.pop('OBSERVER')
        if 'ORIGCAL' in hdr:
            self.git_origin_cal = hdr.pop('ORIGCAL')
        if 'HASHCAL' in hdr:
            self.git_hash_cal = hdr.pop('HASHCAL')

        # generate polarization and time array for either cal_type.
        self.Njones = hdr.pop('NAXIS2')
        self.jones_array = uvutils.fits_gethduaxis(F[0],
                                                   2,
                                                   strict_fits=strict_fits)
        self.Ntimes = hdr.pop('NAXIS3')
        self.time_array = uvutils.fits_gethduaxis(F[0],
                                                  3,
                                                  strict_fits=strict_fits)

        # get data.
        if self.cal_type == 'gain':
            self.set_gain()
            self.gain_array = data[:, :, :, :, :,
                                   0] + 1j * data[:, :, :, :, :, 1]
            self.flag_array = data[:, :, :, :, :, 2].astype('bool')
            if hdr.pop('NAXIS1') == 5:
                self.input_flag_array = data[:, :, :, :, :, 3].astype('bool')
                self.quality_array = data[:, :, :, :, :, 4]
            else:
                self.quality_array = data[:, :, :, :, :, 3]

            self.Nants_data = hdr.pop('NAXIS6')

            self.Nspws = hdr.pop('NAXIS5')
            # add this for backwards compatibility when the spw CRVAL wasn't recorded
            try:
                spw_array = uvutils.fits_gethduaxis(
                    F[0], 5, strict_fits=strict_fits) - 1
                if spw_array[0] == 0:
                    # XXX: backwards compatibility: if array is already (erroneously) zero-
                    #      indexed, do nothing
                    self.spw_array = spw_array
                else:
                    # subtract 1 to be zero-indexed
                    self.spw_array = uvutils.fits_gethduaxis(
                        F[0], 5, strict_fits=strict_fits) - 1
            except (KeyError):
                if not strict_fits:
                    _warn_oldcalfits(filename)
                    self.spw_array = np.array([0])
                else:
                    raise

            # generate frequency array from primary data unit.
            self.Nfreqs = hdr.pop('NAXIS4')
            self.freq_array = uvutils.fits_gethduaxis(F[0],
                                                      4,
                                                      strict_fits=strict_fits)
            self.freq_array.shape = (self.Nspws, ) + self.freq_array.shape

        if self.cal_type == 'delay':
            self.set_delay()
            try:
                # delay-style should have the same number of axes as gains
                self.Nants_data = hdr.pop('NAXIS6')
                self.Nspws = hdr.pop('NAXIS5')
                ax_spw = 5
                old_delay = False
            except (KeyError):
                _warn_olddelay(filename)
                self.Nants_data = hdr.pop('NAXIS5')
                self.Nspws = hdr.pop('NAXIS4')
                ax_spw = 4
                old_delay = True

            if old_delay:
                self.delay_array = data[:, :, np.newaxis, :, :, 0]
                self.quality_array = data[:, :, np.newaxis, :, :, 1]
            else:
                self.delay_array = data[:, :, :, :, :, 0]
                self.quality_array = data[:, :, :, :, :, 1]
            sechdu = F[hdunames['FLAGS']]
            flag_data = sechdu.data
            flag_hdr = sechdu.header
            if sechdu.header['NAXIS1'] == 2:
                self.flag_array = flag_data[:, :, :, :, :, 0].astype('bool')
                self.input_flag_array = flag_data[:, :, :, :, :,
                                                  1].astype('bool')
            else:
                self.flag_array = flag_data[:, :, :, :, :, 0].astype('bool')

            # add this for backwards compatibility when the spw CRVAL wasn't recorded
            try:
                spw_array = uvutils.fits_gethduaxis(F[0],
                                                    ax_spw,
                                                    strict_fits=strict_fits)
                if spw_array[0] == 0:
                    # XXX: backwards compatibility: if array is already (erroneously) zero-
                    #      indexed, do nothing
                    self.spw_array = spw_array
                else:
                    # subtract 1 to be zero-indexed
                    self.spw_array = spw_array - 1
            except (KeyError):
                if not strict_fits:
                    _warn_oldcalfits(filename)
                    self.spw_array = np.array([0])
                else:
                    raise

            # generate frequency array from flag data unit (no freq axis in primary).
            self.Nfreqs = sechdu.header['NAXIS4']
            self.freq_array = uvutils.fits_gethduaxis(sechdu,
                                                      4,
                                                      strict_fits=strict_fits)
            self.freq_array.shape = (self.Nspws, ) + self.freq_array.shape

            # add this for backwards compatibility when the spw CRVAL wasn't recorded
            try:
                spw_array = uvutils.fits_gethduaxis(
                    sechdu, 5, strict_fits=strict_fits) - 1
            except (KeyError):
                if not strict_fits:
                    _warn_oldcalfits(filename)
                    spw_array = np.array([0])
                else:
                    raise
            if not np.allclose(spw_array, self.spw_array):
                raise ValueError(
                    'Spectral window values are different in FLAGS HDU than in primary HDU'
                )

            time_array = uvutils.fits_gethduaxis(sechdu,
                                                 3,
                                                 strict_fits=strict_fits)
            if not np.allclose(time_array,
                               self.time_array,
                               rtol=self._time_array.tols[0],
                               atol=self._time_array.tols[0]):
                raise ValueError(
                    'Time values are different in FLAGS HDU than in primary HDU'
                )

            jones_array = uvutils.fits_gethduaxis(sechdu,
                                                  2,
                                                  strict_fits=strict_fits)
            if not np.allclose(jones_array,
                               self.jones_array,
                               rtol=self._jones_array.tols[0],
                               atol=self._jones_array.tols[0]):
                raise ValueError(
                    'Jones values are different in FLAGS HDU than in primary HDU'
                )

        # remove standard FITS header items that are still around
        std_fits_substrings = [
            'SIMPLE', 'BITPIX', 'EXTEND', 'BLOCKED', 'GROUPS', 'PCOUNT',
            'BSCALE', 'BZERO', 'NAXIS', 'PTYPE', 'PSCAL', 'PZERO', 'CTYPE',
            'CRVAL', 'CRPIX', 'CDELT', 'CROTA', 'CUNIT'
        ]
        for key in hdr.keys():
            for sub in std_fits_substrings:
                if key.find(sub) > -1:
                    hdr.remove(key)

        # find all the remaining header items and keep them as extra_keywords
        for key in hdr:
            if key == 'COMMENT':
                self.extra_keywords[key] = str(hdr.get(key))
            elif key != '':
                self.extra_keywords[key] = hdr.get(key)

        # get total quality array if present
        if 'TOTQLTY' in hdunames:
            totqualhdu = F[hdunames['TOTQLTY']]
            self.total_quality_array = totqualhdu.data

            # add this for backwards compatibility when the spw CRVAL wasn't recorded
            try:
                spw_array = uvutils.fits_gethduaxis(
                    totqualhdu, 4, strict_fits=strict_fits) - 1
            except (KeyError):
                if not strict_fits:
                    _warn_oldcalfits(filename)
                    spw_array = np.array([0])
                else:
                    raise
            if not np.allclose(spw_array, self.spw_array):
                raise ValueError(
                    'Spectral window values are different in TOTQLTY HDU than in primary HDU'
                )

            if self.cal_type != 'delay':
                # delay-type files won't have a freq_array
                freq_array = uvutils.fits_gethduaxis(totqualhdu,
                                                     3,
                                                     strict_fits=strict_fits)
                freq_array.shape = (self.Nspws, ) + freq_array.shape
                if not np.allclose(freq_array,
                                   self.freq_array,
                                   rtol=self._freq_array.tols[0],
                                   atol=self._freq_array.tols[0]):
                    raise ValueError(
                        'Frequency values are different in TOTQLTY HDU than in primary HDU'
                    )

            time_array = uvutils.fits_gethduaxis(totqualhdu,
                                                 2,
                                                 strict_fits=strict_fits)
            if not np.allclose(time_array,
                               self.time_array,
                               rtol=self._time_array.tols[0],
                               atol=self._time_array.tols[0]):
                raise ValueError(
                    'Time values are different in TOTQLTY HDU than in primary HDU'
                )

            jones_array = uvutils.fits_gethduaxis(totqualhdu,
                                                  1,
                                                  strict_fits=strict_fits)
            if not np.allclose(jones_array,
                               self.jones_array,
                               rtol=self._jones_array.tols[0],
                               atol=self._jones_array.tols[0]):
                raise ValueError(
                    'Jones values are different in TOTQLTY HDU than in primary HDU'
                )

        else:
            self.total_quality_array = None

        if run_check:
            self.check(check_extra=check_extra,
                       run_check_acceptability=run_check_acceptability)
Пример #3
0
    def read_uvfits(self,
                    filename,
                    antenna_nums=None,
                    antenna_names=None,
                    ant_str=None,
                    ant_pairs_nums=None,
                    frequencies=None,
                    freq_chans=None,
                    times=None,
                    polarizations=None,
                    blt_inds=None,
                    read_data=True,
                    read_metadata=True,
                    run_check=True,
                    check_extra=True,
                    run_check_acceptability=True):
        """
        Read in header, metadata and data from a uvfits file. Supports reading
        only selected portions of the data.

        Args:
            filename: The uvfits file to read from.
            antenna_nums: The antennas numbers to include when reading data into
                the object (antenna positions and names for the excluded antennas
                will be retained). This cannot be provided if antenna_names is
                also provided. Ignored if read_data is False.
            antenna_names: The antennas names to include when reading data into
                the object (antenna positions and names for the excluded antennas
                will be retained). This cannot be provided if antenna_nums is
                also provided. Ignored if read_data is False.
            ant_pairs_nums: A list of antenna number tuples (e.g. [(0,1), (3,2)])
                specifying baselines to include when reading data into the object.
                Ordering of the numbers within the tuple does not matter.
                Ignored if read_data is False.
            ant_str: A string containing information about what antenna numbers
                and polarizations to include when reading data into the object.
                Can be 'auto', 'cross', 'all', or combinations of antenna numbers
                and polarizations (e.g. '1', '1_2', '1x_2y').
                See tutorial for more examples of valid strings and
                the behavior of different forms for ant_str.
                If '1x_2y,2y_3y' is passed, both polarizations 'xy' and 'yy' will
                be kept for both baselines (1,2) and (2,3) to return a valid
                pyuvdata object.
                An ant_str cannot be passed in addition to any of the above antenna
                args or the polarizations arg.
                Ignored if read_data is False.
            frequencies: The frequencies to include when reading data into the
                object. Ignored if read_data is False.
            freq_chans: The frequency channel numbers to include when reading
                data into the object. Ignored if read_data is False.
            times: The times to include when reading data into the object.
                Ignored if read_data is False.
            polarizations: The polarizations to include when reading data into
                the object. Ignored if read_data is False.
            blt_inds: The baseline-time indices to include when reading data into
                the object. This is not commonly used. Ignored if read_data is False.
            read_data: Read in the visibility and flag data. If set to false,
                only the basic header info and metadata (if read_metadata is True)
                will be read in. Results in an incompletely defined object
                (check will not pass). Default True.
            read_metadata: Read in metadata (times, baselines, uvws) as well as
                basic header info. Only used if read_data is False
                (metadata will be read if data is read). If both read_data and
                read_metadata are false, only basic header info is read in. Default True.
            run_check: Option to check for the existence and proper shapes of
                parameters after reading in the file. Default is True.
                Ignored if read_data is False.
            check_extra: Option to check optional parameters as well as required
                ones. Default is True. Ignored if read_data is False.
            run_check_acceptability: Option to check acceptable range of the values of
                parameters after reading in the file. Default is True.
                Ignored if read_data is False.
        """
        if not read_data:
            run_check = False

        hdu_list = fits.open(filename, memmap=True)
        vis_hdu = hdu_list[
            0]  # assumes the visibilities are in the primary hdu
        vis_hdr = vis_hdu.header.copy()
        hdunames = uvutils.fits_indexhdus(
            hdu_list)  # find the rest of the tables

        # First get everything we can out of the header.
        self.set_phased()
        # check if we have an spw dimension
        if vis_hdr['NAXIS'] == 7:
            if vis_hdr['NAXIS5'] > 1:
                raise ValueError('Sorry.  Files with more than one spectral'
                                 'window (spw) are not yet supported. A '
                                 'great project for the interested student!')

            self.Nspws = vis_hdr.pop('NAXIS5')

            self.spw_array = np.int32(uvutils.fits_gethduaxis(vis_hdu, 5)) - 1

            # the axis number for phase center depends on if the spw exists
            self.phase_center_ra_degrees = np.float(vis_hdr.pop('CRVAL6'))
            self.phase_center_dec_degrees = np.float(vis_hdr.pop('CRVAL7'))
        else:
            self.Nspws = 1
            self.spw_array = np.array([0])

            # the axis number for phase center depends on if the spw exists
            self.phase_center_ra_degrees = np.float(vis_hdr.pop('CRVAL5'))
            self.phase_center_dec_degrees = np.float(vis_hdr.pop('CRVAL6'))

        # get shapes
        self.Nfreqs = vis_hdr.pop('NAXIS4')
        self.Npols = vis_hdr.pop('NAXIS3')
        self.Nblts = vis_hdr.pop('GCOUNT')

        self.freq_array = uvutils.fits_gethduaxis(vis_hdu, 4)
        self.freq_array.shape = (self.Nspws, ) + self.freq_array.shape
        self.channel_width = vis_hdr.pop('CDELT4')
        self.polarization_array = np.int32(uvutils.fits_gethduaxis(vis_hdu, 3))

        # other info -- not required but frequently used
        self.object_name = vis_hdr.pop('OBJECT', None)
        self.telescope_name = vis_hdr.pop('TELESCOP', None)
        self.instrument = vis_hdr.pop('INSTRUME', None)
        latitude_degrees = vis_hdr.pop('LAT', None)
        longitude_degrees = vis_hdr.pop('LON', None)
        altitude = vis_hdr.pop('ALT', None)
        self.x_orientation = vis_hdr.pop('XORIENT', None)
        self.history = str(vis_hdr.get('HISTORY', ''))
        if not uvutils.check_history_version(self.history,
                                             self.pyuvdata_version_str):
            self.history += self.pyuvdata_version_str

        while 'HISTORY' in vis_hdr.keys():
            vis_hdr.remove('HISTORY')

        self.vis_units = vis_hdr.pop('BUNIT', 'UNCALIB')
        self.phase_center_epoch = vis_hdr.pop('EPOCH', None)

        # remove standard FITS header items that are still around
        std_fits_substrings = [
            'SIMPLE', 'BITPIX', 'EXTEND', 'BLOCKED', 'GROUPS', 'PCOUNT',
            'BSCALE', 'BZERO', 'NAXIS', 'PTYPE', 'PSCAL', 'PZERO', 'CTYPE',
            'CRVAL', 'CRPIX', 'CDELT', 'CROTA', 'CUNIT', 'DATE-OBS'
        ]
        for key in vis_hdr.keys():
            for sub in std_fits_substrings:
                if key.find(sub) > -1:
                    vis_hdr.remove(key)

        # find all the remaining header items and keep them as extra_keywords
        for key in vis_hdr:
            if key == 'COMMENT':
                self.extra_keywords[key] = str(vis_hdr.get(key))
            elif key != '':
                self.extra_keywords[key] = vis_hdr.get(key)

        # Next read the antenna table
        ant_hdu = hdu_list[hdunames['AIPS AN']]

        # stuff in the header
        if self.telescope_name is None:
            self.telescope_name = ant_hdu.header['ARRNAM']

        self.gst0 = ant_hdu.header['GSTIA0']
        self.rdate = ant_hdu.header['RDATE']
        self.earth_omega = ant_hdu.header['DEGPDY']
        self.dut1 = ant_hdu.header['UT1UTC']
        if 'TIMESYS' in ant_hdu.header.keys():
            self.timesys = ant_hdu.header['TIMESYS']
        else:
            # CASA misspells this one
            self.timesys = ant_hdu.header['TIMSYS']

        if 'FRAME' in ant_hdu.header.keys():
            xyz_telescope_frame = ant_hdu.header['FRAME']
        else:
            warnings.warn('Required Antenna frame keyword not set, '
                          'setting to ????')
            xyz_telescope_frame = '????'

        # get telescope location and antenna positions.
        # VLA incorrectly sets ARRAYX/ARRAYY/ARRAYZ to 0, and puts array center
        # in the antenna positions themselves
        if (np.isclose(ant_hdu.header['ARRAYX'], 0)
                and np.isclose(ant_hdu.header['ARRAYY'], 0)
                and np.isclose(ant_hdu.header['ARRAYZ'], 0)):
            x_telescope = np.mean(ant_hdu.data['STABXYZ'][:, 0])
            y_telescope = np.mean(ant_hdu.data['STABXYZ'][:, 1])
            z_telescope = np.mean(ant_hdu.data['STABXYZ'][:, 2])
            self.antenna_positions = (
                ant_hdu.data.field('STABXYZ') -
                np.array([x_telescope, y_telescope, z_telescope]))

        else:
            x_telescope = ant_hdu.header['ARRAYX']
            y_telescope = ant_hdu.header['ARRAYY']
            z_telescope = ant_hdu.header['ARRAYZ']
            # AIPS memo #117 says that antenna_positions should be relative to
            # the array center, but in a rotated ECEF frame so that the x-axis
            # goes through the local meridian.
            rot_ecef_positions = ant_hdu.data.field('STABXYZ')
            latitude, longitude, altitude = \
                uvutils.LatLonAlt_from_XYZ(np.array([x_telescope, y_telescope, z_telescope]))
            self.antenna_positions = uvutils.ECEF_from_rotECEF(
                rot_ecef_positions, longitude)

        if xyz_telescope_frame == 'ITRF':
            self.telescope_location = np.array(
                [x_telescope, y_telescope, z_telescope])
        else:
            if latitude_degrees is not None and longitude_degrees is not None and altitude is not None:
                self.telescope_location_lat_lon_alt_degrees = (
                    latitude_degrees, longitude_degrees, altitude)

        # stuff in columns
        ant_names = ant_hdu.data.field('ANNAME').tolist()
        self.antenna_names = []
        for name in ant_names:
            self.antenna_names.append(name.replace('\x00!', ''))

        # subtract one to get to 0-indexed values rather than 1-indexed values
        self.antenna_numbers = ant_hdu.data.field('NOSTA') - 1

        self.Nants_telescope = len(self.antenna_numbers)

        if 'DIAMETER' in ant_hdu.columns.names:
            self.antenna_diameters = ant_hdu.data.field('DIAMETER')

        try:
            self.set_telescope_params()
        except ValueError, ve:
            warnings.warn(str(ve))
Пример #4
0
    def read_uvfits(self,
                    filename,
                    run_check=True,
                    check_extra=True,
                    run_check_acceptability=True):
        """
        Read in data from a uvfits file.

        Args:
            filename: The uvfits file to read from.
            run_check: Option to check for the existence and proper shapes of
                parameters after reading in the file. Default is True.
            check_extra: Option to check optional parameters as well as required
                ones. Default is True.
            run_check_acceptability: Option to check acceptable range of the values of
                parameters after reading in the file. Default is True.
        """
        F = fits.open(filename)
        D = F[0]  # assumes the visibilities are in the primary hdu
        hdr = D.header.copy()
        hdunames = uvutils.fits_indexhdus(F)  # find the rest of the tables

        # astropy.io fits reader scales date according to relevant PZER0 (?)
        time0_array = D.data['DATE']
        try:
            # uvfits standard is to have 2 DATE parameters, both floats:
            # DATE (full day) and _DATE (fractional day)
            time1_array = D.data['_DATE']
            self.time_array = (time0_array.astype(np.double) +
                               time1_array.astype(np.double))
        except (KeyError):
            # cotter uvfits files have one DATE that is a double
            self.time_array = time0_array
            if np.finfo(time0_array[0]).precision < 5:
                raise ValueError('JDs in this file are not precise to '
                                 'better than a second.')
            if (np.finfo(time0_array[0]).precision > 5
                    and np.finfo(time0_array[0]).precision < 8):
                warnings.warn('The JDs in this file have sub-second '
                              'precision, but not sub-millisecond. '
                              'Use with caution.')

        self.Ntimes = len(np.unique(self.time_array))

        # if antenna arrays are present, use them. otherwise use baseline array
        try:
            # Note: uvfits antennas are 1 indexed,
            # need to subtract one to get to 0-indexed
            self.ant_1_array = np.int32(D.data.field('ANTENNA1')) - 1
            self.ant_2_array = np.int32(D.data.field('ANTENNA2')) - 1
            subarray = np.int32(D.data.field('SUBARRAY')) - 1
            # error on files with multiple subarrays
            if len(set(subarray)) > 1:
                raise ValueError('This file appears to have multiple subarray '
                                 'values; only files with one subarray are '
                                 'supported.')
        except (KeyError):
            # cannot set this to be the baseline array because it uses the
            # 256 convention, not our 2048 convention
            bl_input_array = np.int64(D.data.field('BASELINE'))

            # get antenna arrays based on uvfits baseline array
            self.ant_1_array, self.ant_2_array = \
                self.baseline_to_antnums(bl_input_array)
        # check for multi source files
        try:
            source = D.data.field('SOURCE')
            if len(set(source)) > 1:
                raise ValueError('This file has multiple sources. Only single '
                                 'source observations are supported.')
        except (KeyError):
            pass

        # get self.baseline_array using our convention
        self.baseline_array = \
            self.antnums_to_baseline(self.ant_1_array,
                                     self.ant_2_array)
        self.Nbls = len(np.unique(self.baseline_array))

        # initialize internal variables based on the antenna lists
        self.Nants_data = int(
            len(
                np.unique(self.ant_1_array.tolist() +
                          self.ant_2_array.tolist())))

        self.set_phased()
        # check if we have an spw dimension
        if hdr.pop('NAXIS') == 7:
            if hdr['NAXIS5'] > 1:
                raise ValueError('Sorry.  Files with more than one spectral' +
                                 'window (spw) are not yet supported. A ' +
                                 'great project for the interested student!')
            self.data_array = (D.data.field('DATA')[:, 0, 0, :, :, :, 0] +
                               1j * D.data.field('DATA')[:, 0, 0, :, :, :, 1])
            self.flag_array = (D.data.field('DATA')[:, 0, 0, :, :, :, 2] <= 0)
            self.nsample_array = np.abs(
                D.data.field('DATA')[:, 0, 0, :, :, :, 2])
            self.Nspws = hdr.pop('NAXIS5')
            assert (self.Nspws == self.data_array.shape[1])

            # the axis number for phase center depends on if the spw exists
            # subtract 1 to be zero-indexed
            self.spw_array = np.int32(uvutils.fits_gethduaxis(D, 5)) - 1

            self.phase_center_ra_degrees = np.float(hdr.pop('CRVAL6'))
            self.phase_center_dec_degrees = np.float(hdr.pop('CRVAL7'))
        else:
            # in many uvfits files the spw axis is left out,
            # here we put it back in so the dimensionality stays the same
            self.data_array = (D.data.field('DATA')[:, 0, 0, :, :, 0] +
                               1j * D.data.field('DATA')[:, 0, 0, :, :, 1])
            self.data_array = self.data_array[:, np.newaxis, :, :]
            self.flag_array = (D.data.field('DATA')[:, 0, 0, :, :, 2] <= 0)
            self.flag_array = self.flag_array[:, np.newaxis, :, :]
            self.nsample_array = np.abs(D.data.field('DATA')[:, 0, 0, :, :, 2])
            self.nsample_array = (self.nsample_array[:, np.newaxis, :, :])

            # the axis number for phase center depends on if the spw exists
            self.Nspws = 1
            self.spw_array = np.array([0])

            self.phase_center_ra_degrees = np.float(hdr.pop('CRVAL5'))
            self.phase_center_dec_degrees = np.float(hdr.pop('CRVAL6'))

        # get shapes
        self.Nfreqs = hdr.pop('NAXIS4')
        self.Npols = hdr.pop('NAXIS3')
        self.Nblts = hdr.pop('GCOUNT')

        # read baseline vectors in units of seconds, return in meters
        self.uvw_array = (np.array(
            np.stack(
                (D.data.field('UU'), D.data.field('VV'), D.data.field('WW'))))
                          * const.c.to('m/s').value).T

        self.freq_array = uvutils.fits_gethduaxis(D, 4)
        self.channel_width = hdr.pop('CDELT4')

        try:
            self.integration_time = float(D.data.field('INTTIM')[0])
        except (KeyError):
            if self.Ntimes > 1:
                self.integration_time = \
                    float(np.diff(np.sort(list(set(self.time_array))))
                          [0]) * 86400
            else:
                raise ValueError('integration time not specified and only '
                                 'one time present')

        self.freq_array.shape = (self.Nspws, ) + self.freq_array.shape

        self.polarization_array = np.int32(uvutils.fits_gethduaxis(D, 3))

        # other info -- not required but frequently used
        self.object_name = hdr.pop('OBJECT', None)
        self.telescope_name = hdr.pop('TELESCOP', None)
        self.instrument = hdr.pop('INSTRUME', None)
        latitude_degrees = hdr.pop('LAT', None)
        longitude_degrees = hdr.pop('LON', None)
        altitude = hdr.pop('ALT', None)
        self.x_orientation = hdr.pop('XORIENT', None)
        self.history = str(hdr.get('HISTORY', ''))
        if not uvutils.check_history_version(self.history,
                                             self.pyuvdata_version_str):
            self.history += self.pyuvdata_version_str

        while 'HISTORY' in hdr.keys():
            hdr.remove('HISTORY')

        # if 'CASAHIST' in hdr.keys():
        #    self.casa_history=hdr.pop('CASAHIST',None)
        self.vis_units = hdr.pop('BUNIT', 'UNCALIB')
        self.phase_center_epoch = hdr.pop('EPOCH', None)

        # remove standard FITS header items that are still around
        std_fits_substrings = [
            'SIMPLE', 'BITPIX', 'EXTEND', 'BLOCKED', 'GROUPS', 'PCOUNT',
            'BSCALE', 'BZERO', 'NAXIS', 'PTYPE', 'PSCAL', 'PZERO', 'CTYPE',
            'CRVAL', 'CRPIX', 'CDELT', 'CROTA', 'CUNIT', 'DATE-OBS'
        ]
        for key in hdr.keys():
            for sub in std_fits_substrings:
                if key.find(sub) > -1:
                    hdr.remove(key)

        # find all the remaining header items and keep them as extra_keywords
        for key in hdr:
            if key == 'COMMENT':
                self.extra_keywords[key] = str(hdr.get(key))
            elif key != '':
                self.extra_keywords[key] = hdr.get(key)

        # READ the antenna table
        ant_hdu = F[hdunames['AIPS AN']]

        # stuff in the header
        if self.telescope_name is None:
            self.telescope_name = ant_hdu.header['ARRNAM']

        self.gst0 = ant_hdu.header['GSTIA0']
        self.rdate = ant_hdu.header['RDATE']
        self.earth_omega = ant_hdu.header['DEGPDY']
        self.dut1 = ant_hdu.header['UT1UTC']
        try:
            self.timesys = ant_hdu.header['TIMESYS']
        except (KeyError):
            # CASA misspells this one
            self.timesys = ant_hdu.header['TIMSYS']

        try:
            xyz_telescope_frame = ant_hdu.header['FRAME']
        except (KeyError):
            warnings.warn('Required Antenna frame keyword not set, '
                          'setting to ????')
            xyz_telescope_frame = '????'

        # get telescope location and antenna positions.
        # VLA incorrectly sets ARRAYX/ARRAYY/ARRAYZ to 0, and puts array center
        # in the antenna positions themselves
        if (np.isclose(ant_hdu.header['ARRAYX'], 0)
                and np.isclose(ant_hdu.header['ARRAYY'], 0)
                and np.isclose(ant_hdu.header['ARRAYZ'], 0)):
            x_telescope = np.mean(ant_hdu.data['STABXYZ'][:, 0])
            y_telescope = np.mean(ant_hdu.data['STABXYZ'][:, 1])
            z_telescope = np.mean(ant_hdu.data['STABXYZ'][:, 2])
            self.antenna_positions = (
                ant_hdu.data.field('STABXYZ') -
                np.array([x_telescope, y_telescope, z_telescope]))

        else:
            x_telescope = ant_hdu.header['ARRAYX']
            y_telescope = ant_hdu.header['ARRAYY']
            z_telescope = ant_hdu.header['ARRAYZ']
            # AIPS memo #117 says that antenna_positions should be relative to
            # the array center, but in a rotated ECEF frame so that the x-axis
            # goes through the local meridian.
            rot_ecef_positions = ant_hdu.data.field('STABXYZ')
            latitude, longitude, altitude = \
                uvutils.LatLonAlt_from_XYZ(np.array([x_telescope, y_telescope, z_telescope]))
            self.antenna_positions = uvutils.ECEF_from_rotECEF(
                rot_ecef_positions, longitude)

        if xyz_telescope_frame == 'ITRF':
            self.telescope_location = np.array(
                [x_telescope, y_telescope, z_telescope])
        else:
            if latitude_degrees is not None and longitude_degrees is not None and altitude is not None:
                self.telescope_location_lat_lon_alt_degrees = (
                    latitude_degrees, longitude_degrees, altitude)

        # stuff in columns
        ant_names = ant_hdu.data.field('ANNAME').tolist()
        self.antenna_names = []
        for name in ant_names:
            self.antenna_names.append(name.replace('\x00!', ''))

        # subtract one to get to 0-indexed values rather than 1-indexed values
        self.antenna_numbers = ant_hdu.data.field('NOSTA') - 1

        self.Nants_telescope = len(self.antenna_numbers)

        try:
            self.antenna_diameters = ant_hdu.data.field('DIAMETER')
        except (KeyError):
            pass

        del (D)

        try:
            self.set_telescope_params()
        except ValueError, ve:
            warnings.warn(str(ve))