Пример #1
0
def truncate_serial_number_row(data):
    row = data[0]
    to_check = min(5, len(row))
    matched = 0
    for i, value in enumerate(row[1:]):
        try:
            v = utils.flt(value)
        except ValueError:
            v = 0
        if v == utils.flt(i + 1):
            matched += 1

    if float(matched) / to_check > 0.8:
        data = data[1:]

    return data
Пример #2
0
def truncate_serial_number_row(data):
	row = data[0]
	to_check = min(5, len(row))
	matched = 0
	for i, value in enumerate(row[1:]):
		try:
			v = utils.flt(value)
		except ValueError:
			v = 0
		if v==utils.flt(i+1):
			matched+=1
	
	if float(matched) / to_check > 0.8:
		data = data[1:]
		
	return data
Пример #3
0
def get_chart_data(file_data, file_properties, chart_type):
    global consolelog

    if file_properties.get("transpose"):
        map_dataset = map(list, zip(*file_data))
    else:
        map_dataset = [[val for val in row] for row in file_data]

    map_dataset = exclude_total_type_columns(map_dataset, 1)
    start_row, start_column = get_start_row_and_column(map_dataset)
    value_map_dataset = get_numeric_dataset(map_dataset, start_row,
                                            start_column)

    x_labels = file_data[0][1:]
    x_labels = [label[:15] for label in map_dataset[0][start_column:]]
    x_label_color = []

    data_sets = []
    color_steps = int(255.0 / (len(value_map_dataset)))
    i = 0
    for row in value_map_dataset:
        i += color_steps
        if chart_type == "Line":
            data_set_row = {
                "fillColor": "rgba(%i, %i, %i, %s)" % (i, i / 1.2, i / 4, .3),
                "strokeColor": "rgba(%i, %i, %i, %s)" % (i, i / 1.2, i / 4, 1),
                "pointColor": "rgba(%i, %i, %i, %s)" % (i, i, i / 1.2, 1),
                "pointStrokeColor": "#fff",
                "data": [utils.flt(val) for val in row]
            }
            data_sets.append(data_set_row)
            x_label_color.append(data_set_row["strokeColor"])
        elif chart_type == "Pie":
            data_sets.append({
                "value":
                utils.flt(row[1]),
                "color":
                "rgba(%i, %i, %i, %s)" % (i, i / 1.2, i / 4, .3),
            })

    chart_data = {
        "chart_type": chart_type,
        "labels": x_labels,
        "datasets": data_sets
    }

    return chart_data
Пример #4
0
def get_chart_data(file_data, file_properties, chart_type):
	global consolelog

	if file_properties.get("transpose"):
		map_dataset = map(list, zip(*file_data))
	else:
		map_dataset = [[val for val in row] for row in file_data]

	map_dataset = exclude_total_type_columns(map_dataset, 1)
	start_row, start_column = get_start_row_and_column(map_dataset)
	value_map_dataset = get_numeric_dataset(map_dataset, start_row, start_column)

	x_labels = file_data[0][1:]
	x_labels = [label[:15] for label in map_dataset[0][start_column:]]
	x_label_color = []
	
	data_sets = []
	color_steps = int(255.0 / (len(value_map_dataset)))
	i = 0
	for row in value_map_dataset:
		i += color_steps
		if chart_type == "Line":
			data_set_row = {
				"fillColor" : "rgba(%i, %i, %i, %s)" % (i, i/1.2, i/4, .3),
				"strokeColor" : "rgba(%i, %i, %i, %s)" % (i, i/1.2, i/4, 1),
				"pointColor" : "rgba(%i, %i, %i, %s)" % (i, i, i/1.2, 1),
				"pointStrokeColor" : "#fff",
				"data": [utils.flt(val) for val in row]
			}
			data_sets.append(data_set_row)
			x_label_color.append(data_set_row["strokeColor"])
		elif chart_type == "Pie":
			data_sets.append({
				"value": utils.flt(row[1]),
				"color": "rgba(%i, %i, %i, %s)" % (i, i/1.2, i/4, .3),
			})
	
	chart_data = {
		"chart_type": chart_type,
		"labels": x_labels,
		"datasets": data_sets
	}
		
	return chart_data
Пример #5
0
def start():
    print "importing worldbank data..."
    db.insert("source", {"name": "World Bank"})
    utils.convert_to_csv(
        os.path.join("data", "worldbank", "IND_Country_MetaData_en_EXCEL.xls"),
        os.path.join("data", "worldbank"))

    # import dataset
    with open(
            os.path.join(
                "data", "worldbank",
                "IND_Country_MetaData_en_EXCEL-sheet2.csv")) as datafile:
        reader = csv.reader(datafile.read().splitlines())

    for i, row in enumerate(reader):
        if i == 0:
            continue
        row = [unicode(c, "utf-8", errors="ingore") for c in row]
        db.insert_dataset({
            "name": row[1][:150],
            "title": row[1],
            "description": row[2],
            "source_info": row[3],
            "source": "World Bank"
        })

    # import data
    with open(
            os.path.join(
                "data", "worldbank",
                "IND_Country_MetaData_en_EXCEL-sheet1.csv")) as datafile:
        reader = csv.reader(datafile.read().splitlines())

    db.insert("region", {"name": "India"})

    for i, row in enumerate(reader):
        if i == 0:
            headers = row
            for year in row[2:]:
                db.insert("period", {"name": year})

        else:
            for ci, value in enumerate(row):
                if ci > 1 and utils.flt(value):
                    db.insert(
                        "data", {
                            "dataset": row[0],
                            "period": headers[ci],
                            "value": value,
                            "region": "India",
                        })
            if i % 100 == 0:
                sys.stdout.write(".")
                sys.stdout.flush()
Пример #6
0
	def is_year(v):
		if len(v) > 30:
			return False
		if len(v)==4 and utils.is_number(v):
			v = utils.flt(v)
			return v > 1900 and v < 2050
		else:
			matched = re.search("19[0-9]{2}[^0-9]+", v) \
				or re.search("20[0-9]{2}[^0-9]+", v) \
				or re.search("[0189][0-9]-[0189][0-9]", v)
				
			return matched
Пример #7
0
    def is_year(v):
        if len(v) > 30:
            return False
        if len(v) == 4 and utils.is_number(v):
            v = utils.flt(v)
            return v > 1900 and v < 2050
        else:
            matched = re.search("19[0-9]{2}[^0-9]+", v) \
             or re.search("20[0-9]{2}[^0-9]+", v) \
             or re.search("[0189][0-9]-[0189][0-9]", v)

            return matched
def get_chart_data(file_data, file_properties):
	global consolelog
	chart_type = file_properties.get("chart_type")
	if not chart_type:
		return
	
	data_index = file_properties["data_index"]
	x_labels = file_data[file_properties["x_axis"]][data_index:]
	map_dataset = file_data
	if file_properties["transpose"]:
		map_dataset = map(list, zip(*file_data))
		x_labels = map_dataset[file_properties["x_axis"]][data_index:]
	
	data_sets = []
	color_steps = int(255.0 / (len(map_dataset) - 1))
	i = 0
	for d in map_dataset[data_index:]:
		i += color_steps
		if chart_type == "Line":
			data_sets.append({
				"fillColor" : "rgba(%i, %i, %i, %s)" % (i, i/1.2, i/4, .3),
				"strokeColor" : "rgba(%i, %i, %i, %s)" % (i, i/1.2, i/4, 1),
				"pointColor" : "rgba(%i, %i, %i, %s)" % (i, i, i/1.2, 1),
				"pointStrokeColor" : "#fff",
				"data": [utils.flt(val) for val in d[data_index:]]
			})
		elif chart_type == "Pie":
			data_sets.append({
				"value": utils.flt(d[data_index]),
				"color": "rgba(%i, %i, %i, %s)" % (i, i/1.2, i/4, .3),
			})
	
	chart_data = {
		"chart_type": chart_type,
		"labels": x_labels,
		"datasets": data_sets
	}
		
	return json.dumps(chart_data)