from functools import partial from time import time from keras.callbacks import TensorBoard import frame_dataloader import utils.training_utils as eval_globals from configs.motion_configs import * from evaluation import legacy_load_model, get_batch_size from evaluation.evaluation import * from models.motion_models import * from utils import log, get_augmenter_text from utils.drive_manager import DriveManager ################################################################################ """Files, paths & identifier""" suffix = "hater" # put your name or anything(your crush :3) :D experiment_identifier = suffix + ("" if suffix == "" else "-") + get_augmenter_text(augmenter_level) + "-mot-" + model_name + "-" + ("adam" if is_adam else "SGD") + "-" + str(lr) + "-" + ("imnet" if pretrained else "scrat") log_file = "motion.log" log_stream = open("motion.log", "a") training_log = open("motion_training.log", "a") validation_log = open("motion_validation.log", "a") h5py_file = "motion.h5" pred_file = "motion.preds" ################################################################################ """Checking latest""" print(experiment_identifier) num_actions = 10 drive_manager = DriveManager(experiment_identifier) checkpoint_found, zip_file_name = drive_manager.get_latest_snapshot() ################################################################################ # you need to send it as callback before keras reduce on plateau MotionValidationCallback = partial(eval_globals.get_validation_callback,
import frame_dataloader import utils.training_utils as eval_globals from configs.motion_configs import * from evaluation import legacy_load_model, get_batch_size from evaluation.evaluation import * from models.motion_models import * from utils import log, get_augmenter_text from utils.drive_manager import DriveManager ################################################################################ """Files, paths & identifier""" suffix = "" # put your name or anything(your crush :3) :D experiment_identifier = suffix + ( "" if suffix == "" else "-") + get_augmenter_text(augmenter_level) + "-mot-" + model_name + "-" + ( "adam" if is_adam else "SGD") + "-" + str(lr) + "-" + ("imnet" if pretrained else "scrat") log_file = "motion.log" log_stream = open("motion.log", "a") h5py_file = "motion.h5" pred_file = "motion.preds" ################################################################################ """Checking latest""" print(experiment_identifier) num_actions = 101 print("Number of workers:", workers, file=log_stream) drive_manager = DriveManager(experiment_identifier) checkpoint_found, zip_file_name = drive_manager.get_latest_snapshot() ################################################################################ # you need to send it as callback before keras reduce on plateau