Пример #1
0
def compute_average_pr_auc(algo_name, results_dir, dataset_name, n_classes, positive='normal'):
    results = {}
    avg_results = []
    std_results = []
    if positive == 'inliers':
        target = 'pr_auc_norm'
    elif positive == 'outliers':
        target = 'pr_auc_anom'
    else:
        raise KeyError(positive)
    for c in range(n_classes):
        class_name = get_class_name_from_index(c, dataset_name)
        filenames = get_filenames(algo_name, results_dir, dataset_name, class_name)
        results[class_name] = [np.load(f)[target] for f in filenames]
    for k, v in results.items():
        print('{}: {:.4f} +- {:.4f}'.format(k, np.mean(v), np.std(v)))
        avg_results.append(np.mean(v))
        std_results.append(np.std(v))
    # compute the std of average results over multiple runs
    min_runs = min([len(v) for v in results.values()])
    std_rec = []
    for i in range(min_runs):
        ith_run = [results[get_class_name_from_index(c, dataset_name)][i] for c in range(n_classes)]
        std_rec.append(np.mean(ith_run))
    print('-------------------------------------------')
    print('Average: {:.4f} +- {:.4f}'.format(np.mean(avg_results), np.std(std_rec)))
    print('Formated:')
    for r, s in zip(avg_results, std_results):
        print('{:.4f}~{:.4f}'.format(r, s))
    print('{:.4f}~{:.4f}'.format(np.mean(avg_results), np.std(std_rec)))
Пример #2
0
def compute_average_roc_auc(algo_name, results_dir, dataset_name, n_classes):
    results = {}
    avg_results = []
    std_results = []
    for c in range(n_classes):
        class_name = get_class_name_from_index(c, dataset_name)
        filenames = get_filenames(algo_name, results_dir, dataset_name,
                                  class_name)
        results[class_name] = [np.load(f)['roc_auc'] for f in filenames]
    for k, v in results.items():
        print('{}: {:.4f} +- {:.4f}'.format(k, np.mean(v), np.std(v)))
        avg_results.append(np.mean(v))
        std_results.append(np.std(v))
    # compute the std of average results over multiple runs
    min_runs = min([len(v) for v in results.values()])
    std_rec = []
    for i in range(min_runs):
        ith_run = [
            results[get_class_name_from_index(c, dataset_name)][i]
            for c in range(n_classes)
        ]
        std_rec.append(np.mean(ith_run))
    print('-------------------------------------------')
    print('Average: {:.4f} +- {:.4f}'.format(np.mean(avg_results),
                                             np.std(std_rec)))
    print('Formated:')
    for r, s in zip(avg_results, std_results):
        print('{:.4f}~{:.4f}'.format(r, s))
    print('{:.4f}~{:.4f}'.format(np.mean(avg_results), np.std(std_rec)))
Пример #3
0
def _cae_pytorch_experiment(x_train, y_train, dataset_name, single_class_ind,
                            gpu_q, p):
    gpu_to_use = gpu_q.get()

    n_channels = x_train.shape[get_channels_axis()]
    model = CAE_pytorch(in_channels=n_channels)
    batch_size = 128

    model = model.cuda()
    trainset = trainset_pytorch(train_data=x_train,
                                train_labels=y_train,
                                transform=transform_train)
    trainloader = data.DataLoader(trainset,
                                  batch_size=batch_size,
                                  shuffle=True)
    cudnn.benchmark = True
    criterion = nn.MSELoss()
    # use adam always
    optimizer = optim.Adam(model.parameters(), eps=1e-7, weight_decay=0.0005)
    epochs = 250

    # #########################Training########################
    train_cae(trainloader, model, criterion, optimizer, epochs)

    # #######################Testin############################
    testloader = data.DataLoader(trainset, batch_size=1024, shuffle=False)
    losses, reps = test_cae_pytorch(testloader, model)
    losses = losses - losses.min()
    losses = losses / (1e-8 + losses.max())
    scores = 1 - losses

    res_file_name = '{}_cae-{}_{}_{}.npz'.format(
        dataset_name, p,
        get_class_name_from_index(single_class_ind, dataset_name),
        datetime.now().strftime('%Y-%m-%d-%H%M'))
    res_file_path = os.path.join(RESULTS_DIR, dataset_name, res_file_name)
    os.makedirs(os.path.join(RESULTS_DIR, dataset_name), exist_ok=True)
    save_roc_pr_curve_data(scores, y_train, res_file_path)

    # Use reps to train iforest
    clf = IsolationForest(contamination=p, n_jobs=4).fit(reps)
    scores_iforest = clf.decision_function(reps)
    iforest_file_name = '{}_cae-iforest-{}_{}_{}.npz'.format(
        dataset_name, p,
        get_class_name_from_index(single_class_ind, dataset_name),
        datetime.now().strftime('%Y-%m-%d-%H%M'))
    iforest_file_path = os.path.join(RESULTS_DIR, dataset_name,
                                     iforest_file_name)
    save_roc_pr_curve_data(scores_iforest, y_train, iforest_file_path)

    gpu_q.put(gpu_to_use)
def _dsebm_experiment(dataset_load_fn, dataset_name, single_class_ind, gpu_q):
    gpu_to_use = gpu_q.get()
    os.environ["CUDA_VISIBLE_DEVICES"] = gpu_to_use

    (x_train, y_train), (x_test, y_test) = dataset_load_fn()

    n_channels = x_train.shape[get_channels_axis()]
    input_side = x_train.shape[2]  # image side will always be at shape[2]
    encoder_mdl = conv_encoder(input_side, n_channels, representation_activation='relu')
    energy_mdl = dsebm.create_energy_model(encoder_mdl)
    reconstruction_mdl = dsebm.create_reconstruction_model(energy_mdl)

    # optimization parameters
    batch_size = 128
    epochs = 200
    reconstruction_mdl.compile('adam', 'mse')
    x_train_task = x_train[y_train.flatten() == single_class_ind]
    x_test_task = x_test[y_test.flatten() == single_class_ind]  # This is just for visual monitoring
    reconstruction_mdl.fit(x=x_train_task, y=x_train_task,
                           batch_size=batch_size,
                           epochs=epochs,
                           validation_data=(x_test_task, x_test_task))

    scores = -energy_mdl.predict(x_test, batch_size)
    labels = y_test.flatten() == single_class_ind
    res_file_name = '{}_dsebm_{}_{}.npz'.format(dataset_name,
                                                get_class_name_from_index(single_class_ind, dataset_name),
                                                datetime.now().strftime('%Y-%m-%d-%H%M'))
    res_file_path = os.path.join(RESULTS_DIR, dataset_name, res_file_name)
    save_roc_pr_curve_data(scores, labels, res_file_path)

    gpu_q.put(gpu_to_use)
def _raw_ocsvm_experiment(dataset_load_fn, dataset_name, single_class_ind):
    (x_train, y_train), (x_test, y_test) = dataset_load_fn()

    x_train = x_train.reshape((len(x_train), -1))
    x_test = x_test.reshape((len(x_test), -1))

    x_train_task = x_train[y_train.flatten() == single_class_ind]
    if dataset_name in ['cats-vs-dogs']:  # OC-SVM is quadratic on the number of examples, so subsample training set
        subsample_inds = np.random.choice(len(x_train_task), 5000, replace=False)
        x_train_task = x_train_task[subsample_inds]

    pg = ParameterGrid({'nu': np.linspace(0.1, 0.9, num=9),
                        'gamma': np.logspace(-7, 2, num=10, base=2)})

    results = Parallel(n_jobs=6)(
        delayed(_train_ocsvm_and_score)(d, x_train_task, y_test.flatten() == single_class_ind, x_test)
        for d in pg)

    best_params, best_auc_score = max(zip(pg, results), key=lambda t: t[-1])
    best_ocsvm = OneClassSVM(**best_params).fit(x_train_task)
    scores = best_ocsvm.decision_function(x_test)
    labels = y_test.flatten() == single_class_ind

    res_file_name = '{}_raw-oc-svm_{}_{}.npz'.format(dataset_name,
                                                     get_class_name_from_index(single_class_ind, dataset_name),
                                                     datetime.now().strftime('%Y-%m-%d-%H%M'))
    res_file_path = os.path.join(RESULTS_DIR, dataset_name, res_file_name)
    save_roc_pr_curve_data(scores, labels, res_file_path)
Пример #6
0
def _RDAE_experiment(x_train, y_train, dataset_name, single_class_ind, gpu_q,
                     p):
    gpu_to_use = gpu_q.get()
    cudnn.benchmark = True

    n_channels = x_train.shape[get_channels_axis()]
    model = CAE_pytorch(in_channels=n_channels)
    model = model.cuda()
    optimizer = optim.Adam(model.parameters(), eps=1e-7, weight_decay=0.0005)
    criterion = nn.MSELoss()
    epochs = 20
    inner_epochs = 1
    lmbda = 0.00065

    # train RDAE
    losses = train_robust_cae(x_train, model, criterion, optimizer, lmbda,
                              inner_epochs, epochs // inner_epochs, False)
    losses = losses - losses.min()
    losses = losses / (1e-8 + losses.max())
    scores = 1 - losses

    res_file_name = '{}_rdae-{}_{}_{}.npz'.format(
        dataset_name, p,
        get_class_name_from_index(single_class_ind, dataset_name),
        datetime.now().strftime('%Y-%m-%d-%H%M'))
    res_file_path = os.path.join(RESULTS_DIR, dataset_name, res_file_name)
    os.makedirs(os.path.join(RESULTS_DIR, dataset_name), exist_ok=True)
    save_roc_pr_curve_data(scores, y_train, res_file_path)

    gpu_q.put(gpu_to_use)
Пример #7
0
def _cae_ocsvm_experiment(dataset_load_fn, dataset_name, single_class_ind,
                          gpu_q):
    gpu_to_use = gpu_q.get()
    os.environ["CUDA_VISIBLE_DEVICES"] = gpu_to_use

    (x_train, y_train), (x_test, y_test) = dataset_load_fn()

    n_channels = x_train.shape[get_channels_axis()]
    input_side = x_train.shape[2]  # channel side will always be at shape[2]
    enc = conv_encoder(input_side, n_channels)
    dec = conv_decoder(input_side, n_channels)
    x_in = Input(shape=x_train.shape[1:])
    x_rec = dec(enc(x_in))
    cae = Model(x_in, x_rec)
    cae.compile('adam', 'mse')

    x_train_task = x_train[y_train.flatten() == single_class_ind]
    x_test_task = x_test[y_test.flatten(
    ) == single_class_ind]  # This is just for visual monitoring
    cae.fit(x=x_train_task,
            y=x_train_task,
            batch_size=128,
            epochs=200,
            validation_data=(x_test_task, x_test_task))

    x_train_task_rep = enc.predict(x_train_task, batch_size=128)
    if dataset_name in [
            'cats-vs-dogs'
    ]:  # OC-SVM is quadratic on the number of examples, so subsample training set
        subsample_inds = np.random.choice(len(x_train_task_rep),
                                          2500,
                                          replace=False)
        x_train_task_rep = x_train_task_rep[subsample_inds]

    x_test_rep = enc.predict(x_test, batch_size=128)
    pg = ParameterGrid({
        'nu': np.linspace(0.1, 0.9, num=9),
        'gamma': np.logspace(-7, 2, num=10, base=2)
    })

    results = Parallel(n_jobs=6)(delayed(_train_ocsvm_and_score)(
        d, x_train_task_rep, y_test.flatten() == single_class_ind, x_test_rep)
                                 for d in pg)

    best_params, best_auc_score = max(zip(pg, results), key=lambda t: t[-1])
    print(best_params)
    best_ocsvm = OneClassSVM(**best_params).fit(x_train_task_rep)
    scores = best_ocsvm.decision_function(x_test_rep)
    labels = y_test.flatten() == single_class_ind

    res_file_name = '{}_cae-oc-svm_{}_{}.npz'.format(
        dataset_name, get_class_name_from_index(single_class_ind,
                                                dataset_name),
        datetime.now().strftime('%Y-%m-%d-%H%M'))
    res_file_path = os.path.join(RESULTS_DIR, dataset_name, res_file_name)
    save_roc_pr_curve_data(scores, labels, res_file_path)

    gpu_q.put(gpu_to_use)
Пример #8
0
def _adgan_experiment(dataset_load_fn, dataset_name, single_class_ind, gpu_q):
    gpu_to_use = gpu_q.get()
    os.environ["CUDA_VISIBLE_DEVICES"] = gpu_to_use

    (x_train, y_train), (x_test, y_test) = dataset_load_fn()
    if len(x_test) > 5000:
        # subsample x_test due to runtime complexity
        chosen_inds = np.random.choice(len(x_test), 5000, replace=False)
        x_test = x_test[chosen_inds]
        y_test = y_test[chosen_inds]

    n_channels = x_train.shape[get_channels_axis()]
    input_side = x_train.shape[2]  # image side will always be at shape[2]
    critic = conv_encoder(input_side,
                          n_channels,
                          representation_dim=1,
                          representation_activation='linear')
    noise_size = 256
    generator = conv_decoder(input_side,
                             n_channels=n_channels,
                             representation_dim=noise_size)

    def prior_gen(b_size):
        return np.random.normal(size=(b_size, noise_size))

    batch_size = 128
    epochs = 100

    x_train_task = x_train[y_train.flatten() == single_class_ind]

    def data_gen(b_size):
        chosen_inds = np.random.choice(len(x_train_task),
                                       b_size,
                                       replace=False)
        return x_train_task[chosen_inds]

    adgan.train_wgan_with_grad_penalty(prior_gen,
                                       generator,
                                       data_gen,
                                       critic,
                                       batch_size,
                                       epochs,
                                       grad_pen_coef=20)

    scores = adgan.scores_from_adgan_generator(x_test, prior_gen, generator)
    labels = y_test.flatten() == single_class_ind
    res_file_name = '{}_adgan_{}_{}.npz'.format(
        dataset_name, get_class_name_from_index(single_class_ind,
                                                dataset_name),
        datetime.now().strftime('%Y-%m-%d-%H%M'))
    res_file_path = os.path.join(RESULTS_DIR, dataset_name, res_file_name)
    save_roc_pr_curve_data(scores, labels, res_file_path)

    gpu_q.put(gpu_to_use)
def _dagmm_experiment(dataset_load_fn, dataset_name, single_class_ind, gpu_q):
    gpu_to_use = gpu_q.get()
    os.environ["CUDA_VISIBLE_DEVICES"] = gpu_to_use

    (x_train, y_train), (x_test, y_test) = dataset_load_fn()

    n_channels = x_train.shape[get_channels_axis()]
    input_side = x_train.shape[2]  # image side will always be at shape[2]
    enc = conv_encoder(input_side, n_channels, representation_dim=5,
                       representation_activation='linear')
    dec = conv_decoder(input_side, n_channels=n_channels, representation_dim=enc.output_shape[-1])
    n_components = 3
    estimation = Sequential([Dense(64, activation='tanh', input_dim=enc.output_shape[-1] + 2), Dropout(0.5),
                             Dense(10, activation='tanh'), Dropout(0.5),
                             Dense(n_components, activation='softmax')]
                            )

    batch_size = 256
    epochs = 200
    lambda_diag = 0.0005
    lambda_energy = 0.01
    dagmm_mdl = dagmm.create_dagmm_model(enc, dec, estimation, lambda_diag)
    dagmm_mdl.compile('adam', ['mse', lambda y_true, y_pred: lambda_energy*y_pred])

    x_train_task = x_train[y_train.flatten() == single_class_ind]
    x_test_task = x_test[y_test.flatten() == single_class_ind]  # This is just for visual monitoring
    dagmm_mdl.fit(x=x_train_task, y=[x_train_task, np.zeros((len(x_train_task), 1))],  # second y is dummy
                  batch_size=batch_size,
                  epochs=epochs,
                  validation_data=(x_test_task, [x_test_task, np.zeros((len(x_test_task), 1))]),
                  # verbose=0
                  )

    energy_mdl = Model(dagmm_mdl.input, dagmm_mdl.output[-1])

    scores = -energy_mdl.predict(x_test, batch_size)
    scores = scores.flatten()
    if not np.all(np.isfinite(scores)):
        min_finite = np.min(scores[np.isfinite(scores)])
        scores[~np.isfinite(scores)] = min_finite - 1
    labels = y_test.flatten() == single_class_ind
    res_file_name = '{}_dagmm_{}_{}.npz'.format(dataset_name,
                                                get_class_name_from_index(single_class_ind, dataset_name),
                                                datetime.now().strftime('%Y-%m-%d-%H%M'))
    res_file_path = os.path.join(RESULTS_DIR, dataset_name, res_file_name)
    save_roc_pr_curve_data(scores, labels, res_file_path)

    gpu_q.put(gpu_to_use)
def _transformations_experiment(dataset_load_fn, dataset_name, single_class_ind, gpu_q):
    gpu_to_use = gpu_q.get()
    os.environ["CUDA_VISIBLE_DEVICES"] = gpu_to_use

    (x_train, y_train), (x_test, y_test) = dataset_load_fn()

    if dataset_name in ['cats-vs-dogs']:
        transformer = Transformer(16, 16)
        n, k = (16, 8)
    else:
        transformer = Transformer(8, 8)
        n, k = (10, 4)
    mdl = create_wide_residual_network(x_train.shape[1:], transformer.n_transforms, n, k)
    mdl.compile('adam',
                'categorical_crossentropy',
                ['acc'])

    x_train_task = x_train[y_train.flatten() == single_class_ind]
    transformations_inds = np.tile(np.arange(transformer.n_transforms), len(x_train_task))
    x_train_task_transformed = transformer.transform_batch(np.repeat(x_train_task, transformer.n_transforms, axis=0),
                                                           transformations_inds)
    batch_size = 128

    mdl.fit(x=x_train_task_transformed, y=to_categorical(transformations_inds),
            batch_size=batch_size, epochs=int(np.ceil(200/transformer.n_transforms))
            )

    #################################################################################################
    # simplified normality score
    #################################################################################################
    # preds = np.zeros((len(x_test), transformer.n_transforms))
    # for t in range(transformer.n_transforms):
    #     preds[:, t] = mdl.predict(transformer.transform_batch(x_test, [t] * len(x_test)),
    #                               batch_size=batch_size)[:, t]
    #
    # labels = y_test.flatten() == single_class_ind
    # scores = preds.mean(axis=-1)
    #################################################################################################

    def calc_approx_alpha_sum(observations):
        N = len(observations)
        f = np.mean(observations, axis=0)

        return (N * (len(f) - 1) * (-psi(1))) / (
                N * np.sum(f * np.log(f)) - np.sum(f * np.sum(np.log(observations), axis=0)))

    def inv_psi(y, iters=5):
        # initial estimate
        cond = y >= -2.22
        x = cond * (np.exp(y) + 0.5) + (1 - cond) * -1 / (y - psi(1))

        for _ in range(iters):
            x = x - (psi(x) - y) / polygamma(1, x)
        return x

    def fixed_point_dirichlet_mle(alpha_init, log_p_hat, max_iter=1000):
        alpha_new = alpha_old = alpha_init
        for _ in range(max_iter):
            alpha_new = inv_psi(psi(np.sum(alpha_old)) + log_p_hat)
            if np.sqrt(np.sum((alpha_old - alpha_new) ** 2)) < 1e-9:
                break
            alpha_old = alpha_new
        return alpha_new

    def dirichlet_normality_score(alpha, p):
        return np.sum((alpha - 1) * np.log(p), axis=-1)

    scores = np.zeros((len(x_test),))
    observed_data = x_train_task
    for t_ind in range(transformer.n_transforms):
        observed_dirichlet = mdl.predict(transformer.transform_batch(observed_data, [t_ind] * len(observed_data)),
                                         batch_size=1024)
        log_p_hat_train = np.log(observed_dirichlet).mean(axis=0)

        alpha_sum_approx = calc_approx_alpha_sum(observed_dirichlet)
        alpha_0 = observed_dirichlet.mean(axis=0) * alpha_sum_approx

        mle_alpha_t = fixed_point_dirichlet_mle(alpha_0, log_p_hat_train)

        x_test_p = mdl.predict(transformer.transform_batch(x_test, [t_ind] * len(x_test)),
                               batch_size=1024)
        scores += dirichlet_normality_score(mle_alpha_t, x_test_p)

    scores /= transformer.n_transforms
    labels = y_test.flatten() == single_class_ind

    res_file_name = '{}_transformations_{}_{}.npz'.format(dataset_name,
                                                 get_class_name_from_index(single_class_ind, dataset_name),
                                                 datetime.now().strftime('%Y-%m-%d-%H%M'))
    res_file_path = os.path.join(RESULTS_DIR, dataset_name, res_file_name)
    save_roc_pr_curve_data(scores, labels, res_file_path)

    mdl_weights_name = '{}_transformations_{}_{}_weights.h5'.format(dataset_name,
                                                           get_class_name_from_index(single_class_ind, dataset_name),
                                                           datetime.now().strftime('%Y-%m-%d-%H%M'))
    mdl_weights_path = os.path.join(RESULTS_DIR, dataset_name, mdl_weights_name)
    mdl.save_weights(mdl_weights_path)

    gpu_q.put(gpu_to_use)
Пример #11
0
def _E3Outlier_experiment(x_train, y_train, dataset_name, single_class_ind,
                          gpu_q, p):
    """Surrogate Supervision Discriminative Network training."""
    gpu_to_use = gpu_q.get()

    n_channels = x_train.shape[get_channels_axis()]

    if OP_TYPE == 'RA':
        transformer = RA(8, 8)
    elif OP_TYPE == 'RA+IA':
        transformer = RA_IA(8, 8, 12)
    elif OP_TYPE == 'RA+IA+PR':
        transformer = RA_IA_PR(8, 8, 12, 23, 2)
    else:
        raise NotImplementedError
    print(transformer.n_transforms)

    if BACKEND == 'wrn':
        n, k = (10, 4)
        model = WideResNet(num_classes=transformer.n_transforms,
                           depth=n,
                           widen_factor=k,
                           in_channel=n_channels)
    elif BACKEND == 'resnet20':
        n = 20
        model = ResNet(num_classes=transformer.n_transforms,
                       depth=n,
                       in_channels=n_channels)
    elif BACKEND == 'resnet50':
        n = 50
        model = ResNet(num_classes=transformer.n_transforms,
                       depth=n,
                       in_channels=n_channels)
    elif BACKEND == 'densenet22':
        n = 22
        model = DenseNet(num_classes=transformer.n_transforms,
                         depth=n,
                         in_channels=n_channels)
    elif BACKEND == 'densenet40':
        n = 40
        model = DenseNet(num_classes=transformer.n_transforms,
                         depth=n,
                         in_channels=n_channels)
    else:
        raise NotImplementedError('Unimplemented backend: {}'.format(BACKEND))
    print('Using backend: {} ({})'.format(type(model).__name__, BACKEND))

    x_train_task = x_train
    transformations_inds = np.tile(np.arange(transformer.n_transforms),
                                   len(x_train_task))
    x_train_task_transformed = transformer.transform_batch(
        np.repeat(x_train_task, transformer.n_transforms, axis=0),
        transformations_inds)

    # parameters for training
    trainset = trainset_pytorch(train_data=x_train_task_transformed,
                                train_labels=transformations_inds,
                                transform=transform_train)
    batch_size = 128
    trainloader = data.DataLoader(trainset,
                                  batch_size=batch_size,
                                  shuffle=True)
    cudnn.benchmark = True
    criterion = nn.CrossEntropyLoss()
    model = torch.nn.DataParallel(model).cuda()
    if dataset_name in ['mnist', 'fashion-mnist']:
        optimizer = optim.SGD(model.parameters(),
                              lr=0.001,
                              momentum=0.9,
                              weight_decay=0.0005)
    else:
        optimizer = optim.Adam(model.parameters(),
                               eps=1e-7,
                               weight_decay=0.0005)
    epochs = int(np.ceil(250 / transformer.n_transforms))
    train_pytorch(trainloader, model, criterion, optimizer, epochs)

    # SSD-IF
    test_set = testset_pytorch(test_data=x_train_task,
                               transform=transform_test)
    x_train_task_rep = get_features_pytorch(testloader=data.DataLoader(
        test_set, batch_size=batch_size, shuffle=False),
                                            model=model).numpy()
    clf = IsolationForest(contamination=p, n_jobs=4).fit(x_train_task_rep)
    if_scores = clf.decision_function(x_train_task_rep)
    res_file_name = '{}_ssd-iforest-{}_{}_{}.npz'.format(
        dataset_name, p,
        get_class_name_from_index(single_class_ind, dataset_name),
        datetime.now().strftime('%Y-%m-%d-%H%M'))
    res_file_path = os.path.join(RESULTS_DIR, dataset_name, res_file_name)
    os.makedirs(os.path.join(RESULTS_DIR, dataset_name), exist_ok=True)
    save_roc_pr_curve_data(if_scores, y_train, res_file_path)

    # E3Outlier
    if SCORE_MODE == 'pl_mean':
        preds = np.zeros((len(x_train_task), transformer.n_transforms))
        original_preds = np.zeros((transformer.n_transforms, len(x_train_task),
                                   transformer.n_transforms))
        for t in range(transformer.n_transforms):
            idx = np.squeeze(
                np.array([range(x_train_task.shape[0])]) *
                transformer.n_transforms + t)
            test_set = testset_pytorch(
                test_data=x_train_task_transformed[idx, :],
                transform=transform_test)
            original_preds[t, :, :] = softmax(
                test_pytorch(testloader=data.DataLoader(test_set,
                                                        batch_size=batch_size,
                                                        shuffle=False),
                             model=model))
            preds[:, t] = original_preds[t, :, :][:, t]
        scores = preds.mean(axis=-1)
    elif SCORE_MODE == 'max_mean':
        preds = np.zeros((len(x_train_task), transformer.n_transforms))
        original_preds = np.zeros((transformer.n_transforms, len(x_train_task),
                                   transformer.n_transforms))
        for t in range(transformer.n_transforms):
            idx = np.squeeze(
                np.array([range(x_train_task.shape[0])]) *
                transformer.n_transforms + t)
            test_set = testset_pytorch(
                test_data=x_train_task_transformed[idx, :],
                transform=transform_test)
            original_preds[t, :, :] = softmax(
                test_pytorch(testloader=data.DataLoader(test_set,
                                                        batch_size=batch_size,
                                                        shuffle=False),
                             model=model))
            preds[:, t] = np.max(original_preds[t, :, :], axis=1)
        scores = preds.mean(axis=-1)
    elif SCORE_MODE == 'neg_entropy':
        preds = np.zeros((len(x_train_task), transformer.n_transforms))
        original_preds = np.zeros((transformer.n_transforms, len(x_train_task),
                                   transformer.n_transforms))
        for t in range(transformer.n_transforms):
            idx = np.squeeze(
                np.array([range(x_train_task.shape[0])]) *
                transformer.n_transforms + t)
            test_set = testset_pytorch(
                test_data=x_train_task_transformed[idx, :],
                transform=transform_test)
            original_preds[t, :, :] = softmax(
                test_pytorch(testloader=data.DataLoader(test_set,
                                                        batch_size=batch_size,
                                                        shuffle=False),
                             model=model))
            for s in range(len(x_train_task)):
                preds[s, t] = neg_entropy(original_preds[t, s, :])
        scores = preds.mean(axis=-1)
    else:
        raise NotImplementedError

    res_file_name = '{}_e3outlier-{}_{}_{}.npz'.format(
        dataset_name, p,
        get_class_name_from_index(single_class_ind, dataset_name),
        datetime.now().strftime('%Y-%m-%d-%H%M'))
    res_file_path = os.path.join(RESULTS_DIR, dataset_name, res_file_name)
    os.makedirs(os.path.join(RESULTS_DIR, dataset_name), exist_ok=True)
    save_roc_pr_curve_data(scores, y_train, res_file_path)

    gpu_q.put(gpu_to_use)