def main(events): data = get_event_data(events) if len(data) == 0: sys.exit("ERROR: Unable to retrieve data from Mixpanel") matrix = event_data_to_matrix(data, events) response_name = events.pop(0) response_data = matrix[:,0] predictors_data = matrix[:,1:] predictors_names = events model = ols(response_data, predictors_data, response_name, predictors_names) model.summary() ## Generate Equation # Gather list of coefficients so we can build our formula coeff_dict = dict(zip(model.x_varnm, model.b)) equation = "%s = %.5f" % (response_name, coeff_dict['const']) # Start with constant coefficient for name in predictors_names: val = coeff_dict[name] equation += " + %.5f(%s)" % (val, name) print "Regression equation for response variable '%s'" % response_name print print equation
def main(events): data = get_event_data(events) matrix = event_data_to_matrix(data, events) print "Correlation coefficients" for event1, event2 in list_to_pairs(events): data1 = matrix[:,events.index(event1)] data2 = matrix[:,events.index(event2)] coeff = corrcoef(data1, data2)[0][1] print "%s\tx\t%s:\t%f" % (event1, event2, coeff)