Пример #1
0
    def __init__(self, dict_, load=False):
        super().__init__(dict_, load)

        self.type = self.dict['type'] = 'circle'
        self.radius = get_from_dict(self.dict, 'radius', default=None, write_default=True)
        self.center_coord = get_from_dict(self.dict, 'center_coord', default=[0.0, 0.0], write_default=True)
        if isinstance(self.center_coord, list):
            self.center_coord = np.array(self.center_coord, dtype=np.float)
        
        # By opencv convention, origin is at the top-left corner of the pircture.
        self.x0 = self.center_coord[0] - self.radius
        self.x1 = self.center_coord[0] + self.radius
        self.y0 = self.center_coord[1] - self.radius
        self.y1 = self.center_coord[1] + self.radius
        self.xy_range = (self.x0, self.x0, self.x1, self.y1)
        self.square_min_size = self.width = self.height = 2 * self.radius
        self.border_region_width = search_dict(self.dict, ['border_region_width'], default=0.03 * self.square_min_size, write_default=True)

        self.get_random_max = self.get_random_square = self.get_random_max_rectangle
        
        self.avoid_border = self.avoid_border_circle
        self.out_of_region = self.out_of_region_circle
        self.get_random_xy = self.get_random_xy_circle
        
        self.plot_arena = self.plot_arena_plt
Пример #2
0
    def __init__(self, dict_, load=False, options=None):
        '''
        if options is not None:
            self.receive_options(options)
        else:
            raise Exception('Trainer: options is none.')
        '''
        self.dict = dict_
        
        '''
        self.epoch_now = get_from_dict(self.dict, 'epoch_now', default=self.epoch_start, write_default=True)
        self.epoch_start = get_from_dict(self.dict, 'epoch_start', default=1, write_default=True)
        self.epoch_end = get_from_dict(self.dict, 'epoch_end', default=self.epoch_um, write_default=True)
        '''        
        self.epoch_now = 0
        #print(self.dict.keys())
        self.epoch_num = self.dict['epoch_num']
        self.epoch_end = self.epoch_num - 1

        # save directory setting
        self.save_model_path = search_dict(self.dict, ['save_model_path', 'save_dir_model', 'save_path_model'], 
            default='./SavedModels/', write_default=True, write_default_key='save_model_path')
        #print(self.save_model_path)
        ensure_path(self.save_model_path)

        self.save_model = get_from_dict(self.dict, 'save_model', default=True, write_default=True)
        self.save_after_train = get_from_dict(self.dict, 'save_after_train', default=True, write_default=True)
        self.save_before_train = get_from_dict(self.dict, 'save_before_train', default=True, write_default=True)

        if self.save_model:
            self.save_interval = get_from_dict(self.dict, 'save_model_interval', default=True, write_default=True)

        self.anal_path = search_dict(self.dict, ['anal_path'], default='./', write_default=True)
        #print(self.anal_path)
        ensure_path(self.anal_path)
Пример #3
0
    def __init__(self, dict_, load=False):
        if options is not None:
            self.receive_options(options)

        self.dict = dict_
        #set_instance_variable(self, self.dict)
        self.epoch_num = self.dict['epoch_num']
        self.batch_num = self.dict['batch_num']
        self.batch_size = self.dict['batch_size']

        if not hasattr(self, 'anal_path'):
            self.anal_path = self.dict.setdefault('anal_path', './anal/')
        '''
        self.epoch_index = get_from_dict(self.dict, 'epoch_index', default=self.epoch_start, write_default=True)
        self.epoch_start = get_from_dict(self.dict, 'epoch_start', default=1, write_default=True)
        self.epoch_end = get_from_dict(self.dict, 'epoch_end', default=self.epoch_um, write_default=True)
        '''
        self.epoch_index = 0
        self.epoch_end = self.epoch_num - 1

        # save directory setting
        self.save_path = search_dict(
            self.dict, ['save_path', 'save_model_path', 'save_dir_model'],
            default='./saved_models/',
            write_default=True,
            write_default_key='save_path')
        ensure_path(self.save_path)

        self.save = search_dict(self.dict, ['save', 'save_model'],
                                default=True,
                                write_default=True)
        self.save_after_train = get_from_dict(self.dict,
                                              'save_after_train',
                                              default=True,
                                              write_default=True)
        self.save_before_train = get_from_dict(self.dict,
                                               'save_before_train',
                                               default=True,
                                               write_default=True)
        self.anal_before_train = get_from_dict(self.dict,
                                               'anal_before_train',
                                               default=True,
                                               write_default=True)

        if self.save:
            self.save_interval = search_dict(
                self.dict, ['save_interval', 'save_model_interval'],
                default=int(self.epoch_num / 10),
                write_default=True)
        '''
        if options is not None:
            self.options = options
            self.set_options()
        '''
        self.test_performs = self.dict['test_performs'] = {}
        self.train_performs = self.dict['train_performs'] = {}

        self.anal_model = self.dict.setdefault('anal_model', True)
Пример #4
0
    def get_dados_pl(self, json_projeto, projeto, data_projeto, ong_name):
        """
        Returns dictionary with all pl data

        Args
        -------
        json_projeto:
            dict -> json returned on specific pl request
        projeto:
            str -> PL id
        ong_name:
            str -> Ong name

        Returns
        --------
        dict -> all pl data
        """
        crawl = CrawlSenado()
        url_pl = (constants.URL_WEB_SENADO +
                  f"web/atividade/materias/-/materia/{projeto}")
        try:
            situacao_pl = (
                json_projeto['DetalheMateria']['Materia']['SituacaoAtual']
                ['Autuacoes']['Autuacao']['Situacao']['DescricaoSituacao'])
        except TypeError:
            situacoes = (json_projeto['DetalheMateria']['Materia']
                         ['SituacaoAtual']['Autuacoes'])
            situacao_pl = (
                situacoes['Autuacao'][0]['Situacao']['DescricaoSituacao'])

        dados_pl = {
            "ongName":
            ong_name,
            "ementa":
            utils.get_from_dict(self.campos_banco["ementa"], json_projeto),
            "tramitacao":
            crawl.crawl_tramitacao(json_projeto["DetalheMateria"]["Materia"]
                                   ["IdentificacaoMateria"]["CodigoMateria"]),
            "situacao":
            situacao_pl.lower().capitalize(),
            "sigla":
            utils.get_from_dict(self.campos_banco["sigla"], json_projeto),
            "numero":
            utils.get_from_dict(self.campos_banco["numero"],
                                json_projeto).strip("0"),
            "ano":
            utils.get_from_dict(self.campos_banco["ano"], json_projeto),
            "data":
            data_projeto,
            "urlPL":
            url_pl,
            "casa":
            "Senado"
        }
        return dados_pl
Пример #5
0
    def __init__(self, dict_, load=False):
        super().__init__(dict_, load)
        
        #set_instance_variable(self, self.dict, ['width', 'height', 'type'])
        self.width = self.dict['width'] # maximum rectangle
        self.height =self.dict['height']
        self.type_ = self.type = self.dict['type']
        
        self.center_coord = get_from_dict(self.dict, 'center_coord', default=[0.0, 0.0], write_default=True)
        #print(self.center_coord)
        #print(self.width)
        #print(self.height)
        # By opencv convention, origin is at the top-left corner of the pircture.
        self.x0 = self.center_coord[0] - self.width / 2
        self.x1 = self.center_coord[0] + self.width / 2
        self.y0 = self.center_coord[1] - self.width / 2
        self.y1 = self.center_coord[1] + self.width / 2
        self.xy_range = (self.x0, self.x0, self.x1, self.y1)
        self.square_min_size = min(self.width, self.height)

        self.get_random_max = self.get_random_square = self.get_random_max_rectangle

        self.edge_num = get_from_dict(self.dict, 'edge_num', default=None, write_default=True)
        # set self.edge_num
        if self.edge_num is None:
            if self.type in ['square', 'rectangle', 'square_max', 'rec_max']:
                self.edge_num = self.dict['edge_num'] = 4
                self.get_random_xy = self.get_random_xy_max
            elif isinstance(self.type, int):
                self.edge_num = self.dict['edge_num'] = self.type_
                self.get_random_xy = self.get_random_xy_polygon
            else:
                raise Exception('Arena_Polygon: Cannot calculate edge_num.')
        
        self.border_region_width = search_dict(self.dict, ['border_region_width'], default=0.03 * self.square_min_size, write_default=True)

        # standardize arena_type str.
        #print(self.type)
        if self.type in ['rec_max', 'square_max']:
            #print('ccc')
            vertices = np.array([[self.x0, self.y0], [self.x1, self.y0], [self.x1, self.y1], [self.x0, self.y1]])
        else:
            #print('ddd')
            self.rotate = get_from_dict(self.dict, 'rotate', default=0.0, write_default=True)
            vertices = get_polygon_regular(edge_num=self.edge_num, square_size=self.square_min_size, direct_offset=self.rotate, center_coord=self.center_coord)
            self.type = self.dict['type'] = 'polygon'
        edge_vecs = get_polygon_vecs(vertices)
        edge_norms, edge_norms_theta = get_polygon_norms(vertices, edge_vecs)

        set_dict_and_instance_variable(self, self.dict, locals(), keys=['vertices', 'edge_vecs', 'edge_norms', 'edge_norms_theta'])
        
        self.out_of_region = self.out_of_region_polygon
        self.avoid_border = self.avoid_border_polygon
        self.plot_arena = self.plot_arena_plt
Пример #6
0
    def forward(self, x, step_num=None): # [batch_size, C x H x W]
        if step_num is None:
            step_num = self.step_num
        act_list = []
        output_list = []

        x = x.view(x.size(0), -1)
        
        self.prep_input(x)
        #self.reset_x(batch_size=x.size(0))
        #i_ = self.prep_input(x) # [step_num, batch_size, N_num]
        s = None
        h = None
        for time in range(step_num):
            state = self.forward_N(s=s, h=h, i=self.get_input(time))
            s, u, h, o = get_from_dict(state, ['s', 'u', 'h', 'o'])
            act_list.append(u) # [batch_size, N_num]
            output_list.append(o) # [batch_size, output_num]

        output_list = list(map(lambda x:torch.unsqueeze(x, 1), output_list))
        act_list = list(map(lambda x:torch.unsqueeze(x, 1), act_list))
        output = torch.cat(output_list, dim=1) # [batch_size, step_num, output_num]
        act = torch.cat(act_list, dim=1) # [batch_size, step_num, N_num]
        return {
            'output': output, 
            'act': act
        }
Пример #7
0
    def save_senado_project(self, projetos, keywords, ong):
        """
        Saves pl from the senate in the database

        Args
        -----------
        projetos:
            list of strings -> All projects
        keywords:
            list of string -> All keywords from all subjects
        ong:
            dict -> Data from ong

        """
        for projeto in projetos:
            db_data = {}
            id_projeto = projeto['id']
            proj_req = utils.get_request(constants.URL_API_SENADO +
                                         f"materia/{id_projeto}").json()
            ementa = utils.get_from_dict(self.campos_banco["ementa"], proj_req)
            # ementa = (proj_req['DetalheMateria']
            #                 ['Materia']
            #                 ["DadosBasicosMateria"]
            #                 ["EmentaMateria"])
            try:
                codigo_situacao_pl = (
                    proj_req['DetalheMateria']['Materia']['SituacaoAtual']
                    ['Autuacoes']['Autuacao']['Situacao']['CodigoSituacao'])
            except TypeError:
                situacoes = (proj_req['DetalheMateria']['Materia']
                             ['SituacaoAtual']['Autuacoes'])
                codigo_situacao_pl = (
                    situacoes['Autuacao'][0]['Situacao']['CodigoSituacao'])

            situacao_arquivada = self.get_codigo_pl_arquivado()
            senador = Senador()
            if (utils.search_keyword(ementa, keywords)
                    and situacao_arquivada != codigo_situacao_pl):
                json_autor = senador.get_dados_autor(proj_req, id_projeto)
                dados_pl = self.get_dados_pl(proj_req, id_projeto,
                                             projeto['data'], ong["Name"])
                dados_relator = senador.get_dados_relator(id_projeto)
                db_data.update(dados_pl)
                db_data.update(json_autor)
                db_data.update(dados_relator)
                el_data = db_data
                utils.save_projeto_to_db(db_data)
                pl_datetime = (datetime.strptime(el_data['data'], "%d/%m/%Y"))
                el_data['data'] = datetime.strftime(pl_datetime, "%Y/%m/%d")
                el_data['tags_ementa'] = utils.get_tags_from_string(ementa)
                el_data['tags_tramitacao'] = utils.get_tags_from_string(
                    dados_pl["tramitacao"])
                el_data['keywords'] = utils.get_ementa_keyword(
                    keywords, ementa)
                del el_data['_id']
                constants.es.index(index='projects',
                                   doc_type='project',
                                   body=el_data)
Пример #8
0
 def cal_perform(self, data):
     x, y = data['input'].to(self.device), data['output'].to(self.device)
     #x: [batch_size, step_num, input_num]
     #y: [batch_size, step_num, output_num]
     result = self.forward(x)
     output, act = get_from_dict(result, ['output', 'act'])
     #self.dict['act_avg'] = torch.mean(torch.abs(act))
     #print(output.size())
     #input()
     return self.cal_perform_from_output(output, y, act)
Пример #9
0
 def get_coord_from_uf(self, dict_projeto):
     states_coord = constants.states_coord
     pl_uf = utils.get_from_dict(self.campos_senador["estado"],
                                 dict_projeto)
     pl_coord = {
         "coord": {
             "lat": states_coord[pl_uf]["lat"],
             "lon": states_coord[pl_uf]["lon"]
         }
     }
     return pl_coord
Пример #10
0
    def build_db_data(self, json_projeto, ong_name, pl_date, url_camara):
        """
        Returns database fields from reporter or deputy

        Args
        -------
        json_projeto:
            dict -> json returned on specific pl request
        ong_name:
            str -> Ong name
        pl_date:
            string -> pl date in "dd/mm/YYYY" format
        url_deputado:
            string -> camara api url for deputy request
        url_camara:
            string -> camara api url for pl request

        Returns
        --------
        dict -> all pl data
        """
        crawl = CrawlCamara()
        db_data = {
            "ongName":
            ong_name,
            "ementa":
            utils.get_from_dict(self.campos_banco["ementa"], json_projeto),
            "tramitacao":
            utils.get_from_dict(self.campos_banco["tramitacao"], json_projeto),
            "apreciacao":
            crawl.crawl_apreciacao(json_projeto),
            "situacao":
            utils.get_from_dict(self.campos_banco["situacao"], json_projeto),
            "sigla":
            utils.get_from_dict(self.campos_banco["sigla"], json_projeto),
            "numero":
            utils.get_from_dict(self.campos_banco["numero"], json_projeto),
            "ano":
            utils.get_from_dict(self.campos_banco["ano"], json_projeto),
            "data":
            pl_date,
            "urlPL":
            url_camara,
            "regime":
            utils.get_from_dict(self.campos_banco["regime"], json_projeto),
            "apensados":
            crawl.crawl_apensados(json_projeto),
            "casa":
            "Câmara"
        }
        return db_data
Пример #11
0
    def get_dados_autor(self, json_projeto, projeto):
        """
        Returns dictionary with pl author data

        Args
        -------
        json_projeto:
            dict -> json returned on specific pl request

        Returns
        --------
        dict -> all pl author data
        """
        json_autor = {"autor": {}}
        states_coord = constants.states_coord
        try:
            uf = utils.get_from_dict(self.campos_autor["estado"]["uf"],
                                     json_projeto)
            id_autor = utils.get_from_dict(self.campos_autor["id"],
                                           json_projeto)
            url_api_senador = (constants.URL_API_SENADO +
                               f"senador/{id_autor}")
            json_autor["autor"]["id"] = id_autor
            json_autor["autor"]["urlParlamentar"] = utils.get_from_dict(
                self.campos_autor["urlParlamentar"], json_projeto)
            json_autor["autor"]["urlApiParlamentar"] = url_api_senador
            json_autor["autor"]["nome"] = utils.get_from_dict(
                self.campos_autor["nome"], json_projeto)

            json_autor["autor"]["sexo"] = utils.get_from_dict(
                self.campos_autor["sexo"], json_projeto)
            json_autor["autor"]["estado"] = {
                "uf": uf,
                "coord": {
                    "lat": states_coord[uf]["lat"],
                    "lon": states_coord[uf]["lon"]
                }
            }
            json_autor["autor"]["siglaPartido"] = utils.get_from_dict(
                self.campos_autor["siglaPartido"], json_projeto)
        except KeyError:
            json_autor["autor"]["nome"] = utils.get_from_dict([
                'DetalheMateria', 'Materia', 'Autoria', 'Autor', 0, 'NomeAutor'
            ], json_projeto)
            json_autor["autor"]["urlParlamentar"] = None
            json_autor["autor"]["sexo"] = None
            json_autor["autor"]["estado"] = None
            json_autor["autor"]["siglaPartido"] = None
        return json_autor
Пример #12
0
    def build_deputado_final(self, json_fields, url_deputado):
        """
        Returns database fields from reporter or deputy

        Args
        -------
        json_fields:
            dict -> database fields fom reporter or deputy
        url_deputado:
            string -> camara api url for deputy request

        Returns
        --------
        dict -> all deputy data
        """
        states_coord = constants.states_coord
        proposicao = url_deputado[1]
        if url_deputado[0]:
            req_deputado = utils.get_request(url_deputado[0])
            json_deputado = req_deputado.json()
            dados_deputado = json_deputado["dados"]
            uf = utils.get_from_dict(self.campos_deputado["estado"]["uf"],
                                     json_deputado)
            id_parlamentar = utils.get_from_dict(self.campos_deputado["id"],
                                                 json_deputado)
            dados_deputado = {
                json_fields["deputado"]: {
                    "id":
                    id_parlamentar,
                    "nome":
                    utils.get_from_dict(self.campos_deputado["nome"],
                                        json_deputado).lower().title(),
                    json_fields["urlApiParlamentar"]:
                    utils.get_from_dict(
                        self.campos_deputado["urlApiParlamentar"],
                        json_deputado),
                    json_fields["urlParlamentar"]:
                    (constants.SITE_CAMARA + "deputados/"
                     f"{id_parlamentar}"),
                    "siglaPartido":
                    utils.get_from_dict(self.campos_deputado["siglaPartido"],
                                        json_deputado),
                    "urlPartido":
                    utils.get_from_dict(self.campos_deputado["urlPartido"],
                                        json_deputado),
                    "estado": {
                        "uf": uf,
                        "coord": {
                            "lat": states_coord[uf]["lat"],
                            "lon": states_coord[uf]["lon"]
                        }
                    },
                    "sexo":
                    json_deputado["dados"]["sexo"]
                }
            }
        else:
            url_autores_pl = (constants.URL_API_CAMARA +
                              f"proposicoes/{proposicao}/autores")
            dados_autores = utils.get_request(url_autores_pl).json()
            dados_deputado = {
                json_fields["deputado"]: {
                    "id": None,
                    "nome": dados_autores["dados"][0]["nome"],
                    "siglaPartido": None,
                    "estado": None,
                    "sexo": None,
                    json_fields["urlParlamentar"]: None
                }
            }
        return dados_deputado
Пример #13
0
def compute_features(sentences, dictionary, type_analysis):
    """
    Compute the features defined in the Class Features()

    :param sentences: ([[Sentence]]) list of sentences
    :param dictionary: //
    :return: computed features (dictionary)
    """

    features_values = {'n_sentences': len(sentences), 'n_tokens': 0}

    features = Features()

    for sentence in sentences:
        features_values['n_tokens'] += len(sentence.tokens)

        features.max_sentence_trees_depth.append(max_depth(sentence.root))

        for token in sentence.tokens:  # Features for each token in the sentence
            if dictionary:
                features.lexicon_in_dictionary(
                    token, dictionary)  # Lessico nel dizionario di demauro
            features.count_chars_and_tokens(
                token)  # Count character per token and number of tokens
            features.count_forms_and_lemmas(
                token)  # Features about forms and lemmas
            features.count_pos_and_dep(token)  # Count uPOS, xPOS, dep
            features.count_lexical_words(
                token)  # Count lexical words (PAROLE PIENE)
            features.verbal_features(token)  # Verbal features
            features.count_roots(token)
            features.count_links(
                token)  # Checking number of roots and links per file
            features.count_subjects(
                token)  # Count preverbal and postverbal subjects
            features.count_objects(
                token)  # Count preverbal and postverbal objects
            features.count_prepositional_chain_and_syntagms(
                token, sentence
            )  # Count prepositional chains and prepositional syntagms
            features.count_subordinate_propositions(
                token, sentence
            )  # Count subordinate propositions, pre and post verbal subordinates, subordinate chains

    # Compute type/token ratio on forms and lemmas
    if type_analysis == 1:
        if len(features.ttrs_form) > 0:
            features_values['ttr_form'] = dict_distribution(
                features.ttrs_form, 'ttr_form')
            features_values['ttr_lemma'] = dict_distribution(
                features.ttrs_lemma, 'ttr_lemma')
    if type_analysis == 0:
        features_values['ttr_form'] = ratio(len(features.types_form),
                                            float(features.n_tok))
        features_values['ttr_lemma'] = ratio(len(features.types_lemma),
                                             float(features.n_tok))

    features_values['tokens_per_sent'] = ratio(
        features_values['n_tokens'], float(features_values['n_sentences']))

    features_values['char_per_tok'] = ratio(
        features.n_char,
        float(features.n_tok_no_punct))  # mean chars per token

    if dictionary:
        features_values['in_dict'] = ratio(features.in_dict,
                                           float(features.n_tok_no_punct))
        features_values['in_dict_types'] = ratio(
            features.in_dict_types, float(len(features.types_lemma)))
        features_values['in_FO'] = ratio(features.n_FO,
                                         float(features.n_tok_no_punct))
        features_values['in_AD'] = ratio(features.n_AD,
                                         float(features.n_tok_no_punct))
        features_values['in_AU'] = ratio(features.n_AU,
                                         float(features.n_tok_no_punct))
        features_values['in_FO_types'] = ratio(
            features.n_FO_types, float(len(features.types_lemma)))
        features_values['in_AD_types'] = ratio(
            features.n_AD_types, float(len(features.types_lemma)))
        features_values['in_AU_types'] = ratio(
            features.n_AU_types, float(len(features.types_lemma)))

    features_values['upos_dist'] = dict_distribution(
        features.upos_total, 'upos_dist')  # Coarse-grained
    features_values['xpos_dist'] = dict_distribution(
        features.xpos_total, 'xpos_dist')  # Fine-grained
    features_values['lexical_density'] = ratio(features.lexical_words,
                                               features.n_tok_no_punct)
    features_values['verbs_mood_dist'] = dict_distribution(
        features.verbs_mood_total, 'verbs_mood_dist')
    features_values['verbs_tense_dist'] = dict_distribution(
        features.verbs_tense_total, 'verbs_tense_dist')
    features_values['verbs_gender_dist'] = dict_distribution(
        features.verbs_gender_total, 'verbs_gender_dist')
    features_values['verbs_form_dist'] = dict_distribution(
        features.verbs_form_total, 'verbs_form_dist')
    features_values['verbs_num_pers_dist'] = dict_distribution(
        features.verbs_num_pers_total, 'verbs_num_pers_dist')

    # syntactic features
    features_values['verbal_head_total'] = get_from_dict(
        features.upos_total, 'VERB')
    features_values['verbal_head_per_sent'] = ratio(
        get_from_dict(features.upos_total, 'VERB'),
        features_values['n_sentences'])  # For documents
    features_values['verbal_root_total'] = features.n_verbal_root
    features_values['verbal_root_perc'] = ratio(
        features.n_verbal_root, features.n_root)  # For documents
    features_values['avg_token_per_clause'] = ratio(features.n_tok,
                                                    features.n_verb)
    features_values['avg_links_len'] = ratio(features.total_links_len,
                                             features.n_links)
    features_values['max_links_len'] = features.max_links_len
    features_values['avg_max_links_len'] = ratio(
        features.max_links_len, features_values['n_sentences'])
    features_values['avg_max_depth'] = ratio(
        sum(features.max_sentence_trees_depth),
        len(features.max_sentence_trees_depth))  # Documents
    features_values['dep_dist'] = dict_distribution(features.dep_total,
                                                    'dep_dist')
    features_values['dep_total'] = [('dep_total_' + x, y) for x, y in sorted(
        features.dep_total.items(), key=operator.itemgetter(1), reverse=True)]
    features_values['subj_pre'] = ratio(
        features.n_subj_pre, features.n_subj_pre + features.n_subj_post)
    features_values['subj_post'] = ratio(
        features.n_subj_post, features.n_subj_pre + features.n_subj_post)
    features_values['obj_pre'] = ratio(
        features.n_obj_pre, features.n_obj_pre + features.n_obj_post)
    features_values['obj_post'] = ratio(
        features.n_obj_post, features.n_obj_pre + features.n_obj_post)
    features_values['n_prepositional_chains'] = features.n_prepositional_chain
    features_values['avg_prepositional_chain_len'] = ratio(
        features.total_prepositional_chain_len, features.n_prepositional_chain)
    features_values['prepositional_chain_total'] = sorted(
        {
            'prep_total_' + str(i): features.prep_chains.count(i)
            for i in set(features.prep_chains)
        }.items(),
        key=operator.itemgetter(1),
        reverse=True)
    features_values['prepositional_chain_distribution'] = sorted(
        {
            'prep_dist_' + str(i): features.prep_chains.count(i) /
            float(features.n_prepositional_chain)
            for i in set(features.prep_chains)
        }.items(),
        key=operator.itemgetter(1),
        reverse=True)
    features_values['subordinate_chains_total'] = sorted(
        {
            'subordinate_total_' + str(i): features.subordinate_chains.count(i)
            for i in set(features.subordinate_chains)
        }.items(),
        key=operator.itemgetter(1),
        reverse=True)
    features_values['subordinate_chains_distribution'] = sorted(
        {
            'subordinate_dist_' + str(i):
            features.subordinate_chains.count(i) /
            float(features.n_subordinate_chain)
            for i in set(features.subordinate_chains)
        }.items(),
        key=operator.itemgetter(1),
        reverse=True)

    features_values[
        'total_subordinate_proposition'] = features.n_subordinate_proposition
    features_values['total_subordinate_chain'] = features.n_subordinate_chain
    features_values[
        'total_subordinate_chain_len'] = features.total_subordinate_chain_len
    features_values['avg_subordinate_chain_len'] = ratio(
        features.total_subordinate_chain_len, features.n_subordinate_chain)
    features_values['principal_proposition_dist'] = ratio(
        features.n_verb - features.n_subordinate_proposition, features.n_verb)
    features_values['subordinate_proposition_dist'] = ratio(
        features.n_subordinate_proposition, features.n_verb)
    features_values['subordinate_pre'] = ratio(
        features.n_subordinate_pre, features.n_subordinate_proposition)
    features_values['subordinate_post'] = ratio(
        features.n_subordinate_post, features.n_subordinate_proposition)
    features_values['verb_edges_dist'] = [
        ('verb_edges_dist_' + str(k), v)
        for k, v in dict_distribution(features.verb_edges_total, '')
    ]  # Arità totale
    features_values['avg_verb_edges'] = ratio(features.total_verb_edges,
                                              features.n_verb)  # Arità media

    return features_values