parser = argparse.ArgumentParser() help_ = "Use color images" parser.add_argument("-c", "--color", action='store_true', help=help_) help_ = "Shapnet category or class (chair, airplane, etc)" parser.add_argument("--category", default='chair', help=help_) help_ = "Split file" parser.add_argument("-s", "--split_file", default='data/chair_exp.json', help=help_) help_ = "Data png files folder" parser.add_argument("--data", default=PRED_PATH, help=help_) args = parser.parse_args() split_file = args.split_file js = get_ply(split_file) start_time = datetime.datetime.now() t = 0 gt = [] bl = [] pc = [] for key in js.keys(): # key eg 03001627 gt_path_main = os.path.join(GT_PATH, key) pred_path_main = os.path.join(args.data, key) data = js[key] test = data['test'] test_len = len(test) for tag in test: # tag eg fff29a99be0df71455a52e01ade8eb6a gt_path = os.path.join(gt_path_main, tag)
category=category, evaluate=True) ptcloud_ae.stop_sources() exit(0) if args.ptcloud_ae_weights: print("Loading point cloud ae weights: ", args.ptcloud_ae_weights) ptcloud_ae.use_emd = False ptcloud_ae.ae.load_weights(args.ptcloud_ae_weights) else: print("Trained point cloud ae required to pc2pix") exit(0) pc2pix = PC2Pix(ptcloud_ae=ptcloud_ae, gw=args.generator, dw=args.discriminator, pc_code_dim=args.pc_code_dim, batch_size=batch_size, category=category) js = get_ply(args.split_file) datasets = ('test') start_time = datetime.datetime.now() os.makedirs(PLOTS_PATH, exist_ok=True) t = 0 interpolate = False for key in js.keys(): # key eg 03001627 data = js[key] tags = data['test'] ply_path_main = os.path.join(args.ply, key) tagslen = len(tags) n_interpolate = 10 if not interpolate: n_interpolate = 2