Пример #1
0
    def __init__(self, args):
        self.initial_lr = args.learning_rate
        self.lr = args.learning_rate
        self.test_only = args.test_only
        self.dump_statistics = args.dump_statistics
        self.modelName = args.model
        self.experiment = args.experiment
        self.log_path = args.log_path
        self.save_path = args.save_path

        if not os.path.isdir(self.log_path):
            os.makedirs(self.log_path)

        self.logger = Logger(
            '%s/%s_%s.csv' % (self.log_path, self.modelName, args.experiment),
            'epoch, time, learning_rate, tr_loss, tr_acc, val_loss, val_acc')
        self.progress_bar = ProgressBar()
        self.chrono = Chrono()

        self.trainset, self.testset, self.trainloader, self.testloader = dataloader(
        )

        print('==> Building model..')
        self.ae = AutoEncoder()
        self.model = getattr(models, self.modelName)()

        if self.modelName == 'bit':
            self.model.load_from(
                numpy.load('./state_dicts/%s.npz' % self.modelName))

        if torch.cuda.is_available():
            self.ae = torch.nn.DataParallel(self.ae)
            self.model = torch.nn.DataParallel(self.model)
            torch.backends.cudnn.benchmark = True

        self.optimizer = torch.optim.SGD(self.model.parameters(),
                                         lr=self.lr,
                                         momentum=0.9)

        self.load_ae()
        if args.resume or self.test_only or self.dump_statistics:
            self.load()

        self.criterion = torch.nn.CrossEntropyLoss()
        self.criterion = get_torch_vars(self.criterion, False)

        self.ae = get_torch_vars(self.ae, False)
        self.model = get_torch_vars(self.model, False)
Пример #2
0
def train():
    autoencoder.train()
    epochs = [1, 5, 10]
    for epoch in range(epochs[-1]):
        running_loss = 0.0
        progress_bar.newbar(len(trainloader))
        for batch_idx, (inputs, _) in enumerate(trainloader):
            with chrono.measure("step_time"):
                inputs = get_torch_vars(inputs)

                lr = update_lr(optimizer, epoch, epochs, 0.003, batch_idx,
                               len(trainloader))
                if lr is None:
                    break

                _, decoded = autoencoder(inputs)
                loss = criterion(decoded, inputs)
                optimizer.zero_grad()
                loss.backward()
                optimizer.step()

                running_loss += loss.data

            msg = 'Step: %s | Tot: %s | LR: %.10f | Loss: %.3f' % \
                  (Utils.format_time(chrono.last('step_time')),
                   Utils.format_time(chrono.total('step_time')),
                   lr,
                   running_loss / (batch_idx + 1))
            progress_bar.update(batch_idx, msg)

        chrono.remove("step_time")
Пример #3
0
def valid():
    print("Loading checkpoint...")
    autoencoder.load_state_dict(torch.load("./state_dicts/autoencoder.pkl"))
    dataiter = iter(testloader)
    images, labels = dataiter.next()
    images = get_torch_vars(images)
    decoded_imgs = autoencoder(images)[0]

    imshow(torchvision.utils.make_grid(images))
    imshow(torchvision.utils.make_grid(decoded_imgs.data))
Пример #4
0
    def train(self):
        self.model.train()
        self.train_loss = 0
        correct = 0
        total = 0
        self.pred = []
        self.progress_bar.newbar(len(self.trainloader))
        for batch_idx, (inputs, targets) in enumerate(self.trainloader):
            with self.chrono.measure("step_time"):
                inputs = get_torch_vars(inputs)
                targets = get_torch_vars(targets)

                self.lr = update_lr(self.optimizer,
                                    self.epoch, self.epochs,
                                    self.initial_lr,
                                    batch_idx, len(self.trainloader))
                if self.lr is None:
                    break

                self.optimizer.zero_grad()
                outputs = self.model(inputs)
                loss = self.criterion(outputs.double(), targets.double())
                loss.backward()
                self.optimizer.step()

                self.train_loss += loss.item()
                predicted = (outputs + 0.5).int()
                total += targets.size(0)
                correct += (predicted == targets).sum().item()
                self.pred.append(outputs.cpu().data.numpy())

            msg = self.step_msg % (Utils.format_time(self.chrono.last('step_time')),
                                   Utils.format_time(self.chrono.total('step_time')),
                                   self.lr,
                                   self.train_loss / (batch_idx + 1),
                                   100. * correct / total,
                                   correct,
                                   total)
            self.progress_bar.update(batch_idx, msg)

        self.chrono.remove("step_time")
        self.train_acc = 100. * correct / total
Пример #5
0
    def train(self):
        self.ae.eval()
        self.model.train()
        self.train_loss = 0
        correct = 0
        total = 0
        self.progress_bar.newbar(len(self.trainloader))
        for batch_idx, (inputs, targets) in enumerate(self.trainloader):
            with self.chrono.measure("step_time"):
                inputs = get_torch_vars(inputs)
                targets = get_torch_vars(targets)

                self.lr = update_lr(self.optimizer, self.epoch, self.epochs,
                                    self.initial_lr, batch_idx,
                                    len(self.trainloader))
                if self.lr is None:
                    break

                self.optimizer.zero_grad()
                encoded, _ = self.ae(inputs)
                outputs = self.model(encoded)
                loss = self.criterion(outputs, targets)
                loss.backward()
                self.optimizer.step()

                self.train_loss += loss.item()
                _, predicted = outputs.max(1)
                total += targets.size(0)
                correct += predicted.eq(targets).sum().item()

            msg = self.step_msg % (
                Utils.format_time(self.chrono.last('step_time')),
                Utils.format_time(
                    self.chrono.total('step_time')), self.lr, self.train_loss /
                (batch_idx + 1), 100. * correct / total, correct, total)
            self.progress_bar.update(batch_idx, msg)

        self.chrono.remove("step_time")
        self.train_acc = 100. * correct / total
Пример #6
0
    def test(self):
        self.model.eval()
        self.test_loss = 0
        correct = 0
        total = 0
        self.pred = []
        self.confusion_matrix = torch.zeros([len(self.classes), len(self.classes)], dtype=torch.int)
        with torch.no_grad():
            self.progress_bar.newbar(len(self.testloader))
            for batch_idx, (inputs, targets) in enumerate(self.testloader):
                with self.chrono.measure("step_time"):
                    inputs = get_torch_vars(inputs)
                    targets = get_torch_vars(targets)

                    outputs = self.model(inputs)
                    loss = self.criterion(outputs.double(), targets.double())

                    self.test_loss += loss.item()
                    predicted = (outputs + 0.5).int()
                    total += targets.size(0)
                    correct += (predicted == targets).sum().item()
                    self.pred.append(outputs.cpu().data.numpy())

                    for t, p in zip(targets.view(-1), predicted.view(-1)):
                        self.confusion_matrix[t.long(), p.long()] += 1

                msg = self.step_msg % (Utils.format_time(self.chrono.last('step_time')),
                                       Utils.format_time(self.chrono.total('step_time')),
                                       self.lr,
                                       self.test_loss / (batch_idx + 1),
                                       100. * correct / total,
                                       correct,
                                       total)
                self.progress_bar.update(batch_idx, msg)

        self.chrono.remove("step_time")
        self.test_acc = 100. * correct / total
Пример #7
0
    def __init__(self, args):
        self.initial_lr = args.learning_rate
        self.lr = args.learning_rate
        self.test_only = args.test_only
        self.dump_statistics = args.dump_statistics
        self.modelName = "malconv"
        self.experiment = args.experiment
        self.log_path = args.log_path
        self.save_path = args.save_path

        if not os.path.isdir(self.log_path):
            os.makedirs(self.log_path)

        self.logger = Logger('%s/%s_%s.csv' % (self.log_path, self.modelName, args.experiment),
                             'epoch, time, learning_rate, tr_loss, tr_acc, val_loss, val_acc')
        self.progress_bar = ProgressBar()
        self.chrono = Chrono()

        self.trainset, self.testset, self.trainloader, self.testloader = dataloader(args.first_n_byte)

        print('==> Building model..')
        self.model = MalConv(input_length=args.first_n_byte)

        if torch.cuda.is_available():
            self.model = torch.nn.DataParallel(self.model)
            torch.backends.cudnn.benchmark = True

        self.optimizer = torch.optim.Adam(self.model.parameters(), lr=self.lr)

        if args.resume or self.test_only or self.dump_statistics:
            self.load()

        self.criterion = torch.nn.BCELoss()
        self.criterion = get_torch_vars(self.criterion, False)

        self.model = get_torch_vars(self.model, False)
Пример #8
0

if __name__ == '__main__':
    parser = argparse.ArgumentParser(description="Train Autoencoder")
    parser.add_argument("--valid",
                        action="store_true",
                        default=False,
                        help="Perform validation only.")
    args = parser.parse_args()

    chrono = Chrono()
    progress_bar = ProgressBar()

    _, _, trainloader, testloader = dataloader()

    autoencoder = get_torch_vars(AutoEncoder(), False)

    if torch.cuda.is_available():
        autoencoder = torch.nn.DataParallel(autoencoder)
        torch.backends.cudnn.benchmark = True

    if args.valid:
        valid()
        exit(0)

    criterion = nn.BCEWithLogitsLoss()
    optimizer = optim.Adam(autoencoder.parameters())

    train()

    print('Finished Training')