def make_movie(datadir, deltaname, variable, framenum): datafile = utils.datafiles[variable] delta = utils.get_data(datadir, datafile, deltaname) mp = utils.gridEdges(datadir) cmap = utils.cmap[variable] vmin = np.nanmin(delta["data"]) vmax = np.nanmax(delta["data"]) norm = colors.Normalize(vmin=vmin, vmax=vmax) fig = plt.figure() ax = fig.add_subplot(1, 1, 1) bm = utils.basemap(ax) X, Y = bm(mp["lons"], mp["lats"]) print ax.get_xlim() print ax.get_ylim() ax.axis(utils.mapbounds[deltaname]) def updatefig(i): mp["map"][delta["inds"][0], delta["inds"][1]] = delta["data"].iloc[i, :] date = delta["data"].index[i].strftime("%Y-%m-%d") im = bm.pcolormesh(X, Y, np.ma.masked_invalid(mp["map"]), cmap=cmap, norm=norm) cbar = bm.colorbar(im, "bottom", cmap=cmap, norm=norm) ax.set_title("{}: {}".format(utils.fullname[variable], date)) framenum = 5 ani = animation.FuncAnimation(fig, updatefig, frames=framenum) ani.save("{}_{}_{}.mp4".format(utils.fullname[variable], deltaname, framenum))
import sys import utils """ python means.py [delta] """ deltaname = str(sys.argv[1]) datadir = 'data' datafile = 'inun_minremoved_v1v2.pkl' #Array of nans the size of dataset based on size of map #Array of bounding map edges globalMap = utils.gridEdges(datadir) #Actual inundation data for specified river delta = utils.get_data(datadir, datafile, deltaname) dates = delta['data'].index timeMean = delta['data'].mean(axis=1) locMean = delta['data'].mean(axis=0) cmap = cm.GMT_drywet vmin = np.amin(locMean) vmax = np.amax(locMean) norm = colors.Normalize(vmin=vmin, vmax=vmax) fig = plt.figure()
import matplotlib.pyplot as plt import pickle from mpl_toolkits.basemap import Basemap, cm import matplotlib.animation as animation from matplotlib import colors import utils import PCAmekong datadir = 'data' deltaname = 'Amazon' datafile = 'inun_minremoved_v1v2.pkl' #Array of nans the size of dataset based on size of map #Array of bounding map edges map = utils.gridEdges(datadir) #Actual inundation data for specified river delta = utils.get_data(datadir, datafile,deltaname) cmap = cm.GMT_drywet vmin = np.nanmin(delta['data']) vmax = np.nanmax(delta['data']) norm = colors.Normalize(vmin=vmin, vmax=vmax) fig = plt.figure() ax = fig.add_subplot(2,2,1) #sets up basemap object to plot bm = utils.basemap(ax) X, Y = bm(map['lons'], map['lats'])
pmtm = pmdata.std(axis=1) itm,pmtm = cleanNans(itm,pmtm) slope, intercept, _, _, _ = st.linregress(itm, pmtm) ax = addScatter(fig,plt,itm,pmtm,1,1,1) ax.set_xlabel("Inundation") ax.set_ylabel("Precipitation") ax.plot(itm, slope*itm + intercept, color='k') ax.set_title("Correlation is: {}".format(st.pearsonr(itm,pmtm)[0]),y=1.02) # plt.savefig("./graphs/tendaystats.png") corrs = [] for i, p in zip(idata.values.T, pmdata.values.T): mask = (np.isfinite(i) & np.isfinite(p)) corrs.append(st.pearsonr(i[mask],p[mask])[0]) print len(corrs) globe = utils.gridEdges('data') delta = utils.get_data('data', 'delta_3B42_precip.pkl', 'Amazon') fig = plt.figure() ax1 = fig.add_subplot(1,1,1) cmap = cm.GMT_drywet vmax = np.nanmax(corrs) # vmin = -vmax vmin = 0 norm = colors.Normalize(vmin=vmin, vmax=vmax) bm = utils.basemap(ax1) X, Y = bm(globe['lons'], globe['lats'])
datadir = 'data_old' datafile = 'delta_3B42_precip.pkl' delta = utils.get_data(datadir, datafile, deltaName) results = get(analysisType,delta['data'],row); f = open('output.txt','w') for i in results: f.write(str(i)+"\n") f.close() fig = plt.figure() ax1 = fig.add_subplot(1,1,1) # ax1.plot(np.arange(len(results)),results) # i dont know what I am doing starting over here globe = utils.gridEdges(datadir) cmap = cm.GMT_drywet # cmap = "copper" vmin = np.nanmin(results.values) vmax = np.nanmax(results.values) norm = colors.Normalize(vmin=vmin, vmax=vmax) bm = utils.basemap(ax1) X, Y = bm(globe['lons'], globe['lats']) #results = np.array(results) ax1.axis(utils.mapbounds[deltaName]) ax1.set_title("Precipitation {} {}s by location".format(deltaName,analysisType)) globe['map'][delta['inds'][0], delta['inds'][1]] = results