Пример #1
0
    # something other than the image we're going to reconstruct, but
    # since this is just proof of concept, we'll go ahead
    cx = kx.copy()
    cy = ky.copy()
    calib = k.copy()
    # calib = np.tile(calib[:, None, :], (1, 2, 1))
    calib = calib[:, None, :] # middle axis is the through-time dim

    # Undersample: R=2
    k[::2] = 0

    # Reconstruct with Non-Cartesian GRAPPA
    res = ttgrappa(
        kx, ky, k, cx, cy, calib, kernel_size=25, coil_axis=-1)

    # Let's take a look
    sos = lambda x0: np.sqrt(np.sum(np.abs(x0)**2, axis=-1))
    gridder0 = lambda x0: gridder(kx, ky, x0, sx=sx, sy=sx)
    plt.subplot(1, 3, 1)
    plt.imshow(sos(gridder0(k)))
    plt.title('Undersampled')

    plt.subplot(1, 3, 2)
    plt.imshow(sos(gridder0(kspace.reshape((-1, nc)))))
    plt.title('True')

    plt.subplot(1, 3, 3)
    plt.imshow(sos(gridder0(res)))
    plt.title('Through-time GRAPPA')
    plt.show()
Пример #2
0
        # Do the thing
        t0 = time()
        bart_imspace = bart_nufft(bart_k)
        bart_time = time() - t0

        # Check it out
        plt.figure()
        plt.imshow(sos(bart_imspace))
        plt.title('BART NUFFT')
        plt.xlabel('Recon: %g sec' % bart_time)
        plt.show(block=False)

    # The phantominator module also supports arbitrary kspace
    # sampling for multiple coils:
    kx, ky = radial(sx, spokes)
    k = kspace_shepp_logan(kx, ky, ncoil=nc)

    # We will prefer a gridding approach to keep things simple.  The
    # helper function gridder wraps scipy.interpolate.griddata():
    t0 = time()
    grid_imspace = gridder(kx, ky, k, sx, sx, os=os, method=method)
    grid_time = time() - t0

    # Take a gander
    plt.figure()
    plt.imshow(sos(grid_imspace))
    plt.title('scipy.interpolate.griddata')
    plt.xlabel('Recon: %g sec' % grid_time)
    plt.show()
Пример #3
0
    t0 = time()
    res_cart = grog(kx, ky, k, 2 * N, 2 * N, Gx, Gy)
    print('Gridded in %g seconds' % (time() - t0))

    # Now back to radial (inverse GROG)
    res_radial = grog(kx,
                      ky,
                      np.reshape(res_cart, (-1, nc), order='F'),
                      2 * N,
                      2 * N,
                      Gx,
                      Gy,
                      inverse=True)

    # Make sure we gridded something recognizable
    nx, ny = 1, 3
    plt.subplot(nx, ny, 1)
    plt.imshow(sos(gridder(kx, ky, k, N, N)))
    plt.title('Radial Truth')

    plt.subplot(nx, ny, 2)
    N2 = int(N / 2)
    plt.imshow(sos(ifft(res_cart))[N2:-N2, N2:-N2])
    plt.title('GROG Cartesian')

    plt.subplot(nx, ny, 3)
    plt.imshow(sos(gridder(kx, ky, res_radial, N, N)))
    plt.title('GROG Radial (Inverse)')

    plt.show()
Пример #4
0
    hysplit_file_list = utils.get_hysplit_files(run_date=run_date, run_hours=hours)

    utils.write_control_file(start_time=run_date,
                             coords=location_list,
                             hyfile_list=hysplit_file_list,
                             hours=hours,
                             vertical_type=vertical_type,
                             init_height=init_height,
                             tdumpdir=utils.trajectory_dir)
    print 'calling HYSPLIT'
    call(utils.HYSPLIT_call, shell=False, cwd=utils.HYSPLIT_workdir)


if __name__ == "__main__":
    grid_coords = utils.gridder([27, -130], [36, -137], [41, -128], [32, -121],
                                numlats=5, numlons=6)
#    utils.plot_gridpoints(grid_coords)
    date_list = [dt.datetime(2015, 7, 01) + dt.timedelta(x) for x in range(0, 60)]
    loop = lt(len(date_list))

    fig, ax, m_ax = utils.make_map_plot()

#    date_list = [dt.datetime(2015, 8, 19) + dt.timedelta(x) for x in range(0, 2)]

    for i, date in enumerate(date_list):
        loop.update(i)
        if False:
            run_trajectories(date, grid_coords)
        if True:
            t_name = os.path.join(utils.trajectory_dir,
                                  'tdump'+date.strftime('%Y%m%dH%H%M'))
Пример #5
0
    sx, spokes, nc = 256, 256, 8
    traj = bart(1, 'traj -r -x%d -y%d' % (sx, spokes))
    kx, ky = traj[0, ...].real.flatten(), traj[1, ...].real.flatten()

    # Use BART to get Shepp-Logan and sensitivity maps
    t0 = time()
    k = bart(1, 'phantom -k -s%d -t' % nc, traj).reshape((-1, nc))
    print('Took %g seconds to simulate %d coils' % (time() - t0, nc))
    sens = bart(1, 'phantom -S%d -x%d' % (nc, sx)).squeeze()

    # Undersample
    ku = k.copy()
    ku[::2] = 0

    # Take a looksie
    sos = lambda x0: np.sqrt(np.sum(np.abs(x0)**2, axis=-1))
    plt.subplot(1, 3, 1)
    plt.imshow(sos(gridder(kx, ky, k, sx, sx)))
    plt.title('Truth')

    plt.subplot(1, 3, 2)
    plt.imshow(sos(gridder(kx, ky, ku, sx, sx)))
    plt.title('Undersampled')

    plt.subplot(1, 3, 3)
    res = pars(kx, ky, ku, sens, kernel_radius=.8)
    plt.imshow(sos(res))
    plt.title('PARS')

    plt.show()
Пример #6
0
def _gridder0(x0):
    return gridder(kx, ky, x0, sx=sx, sy=sx)