def f_photo(L, p_photo):
    l, a, b, c, du, dd = tuple(L)
    if p_photo == 2:
        return heaviside(l - l_fizzle(L, 750)) * heaviside(l_fry(L, 600) - l)
    elif p_photo == 1:
        return heaviside(l - l_fizzle(L, 1100)) * heaviside(l_fry(L, 400) - l)
    else:
        return 1
def f_CO(L, p_CO, k_C=-.0089, k_O=.0118, k_Mg=-.500, k_Si=.0062):
    l, a, b, c, du, dd = tuple(L)
    Delta_ER = 1.35 * du + 2.92 * dd + 3.97 * a - 8.24
    if p_CO == 1:
        return heaviside(Delta_ER - k_C) * heaviside(k_O - Delta_ER)
    elif p_CO == 2:
        return heaviside(Delta_ER - k_Mg) * heaviside(k_Si - Delta_ER)
    else:
        return 1
def f_Fe(L, p_Fe):
    l, a, b, c, du, dd = tuple(L)
    Fe_stable = -(-9.5 + 10.5412 * a - 0.511 * b - 4.67 * dd + 2.16 * du)
    Co_unstable = -3.75714 + 10.9144 * a - 0.511 * b - 4.67 * dd + 2.16 * du
    Ni_unstable = -2.87143 + 11.2876 * a - 0.511 * b - 4.67 * dd + 2.16 * du
    not_Cr = -(-10.3857 + 10.1679 * a - 0.511 * b - 4.67 * dd + 2.16 * du)
    if p_Fe == 1:
        #        return heaviside(Ni_unstable)*heaviside(Fe_stable)
        return heaviside(Co_unstable) * heaviside(Fe_stable)


#        return heaviside(not_Cr)
#        return heaviside(Co_unstable)
    else:
        return 1
def n_temp(L, p_temp):  #number of planets in temperate zone
    l, a, b, c, du, dd = tuple(L)
    if p_temp == 1:
        return .431*l**(-85/48)*a**(11/2)*b**(7/4)*c**(-5/8)\
    *heaviside(1-temp_thresh(L))
    else:
        return 1
Пример #5
0
    def __init__(self, width, depth, shape, size, middle=None):
        import numpy as np
        from utils import heaviside

        # Create a new grid for the potential
        super(ThreeDOneDWell, self).__init__(shape, size)

        if middle is None:
            # Define r_0, the center of the well, to be the middle of the grid
            r_0 = size[2] / 2.0
        else:
            # The middle is defined
            r_0 = middle

        one_d_vector = depth - depth*heaviside((r_0 + (width/2.0) - self.coord_array(2)) % self.size[2]) - \
                       depth*heaviside((r_0 - (width/2.0) - self.coord_array(2)) % self.size[2])
        # one_d_vector = depth - depth*heaviside(((width/2.0) - abs(self.coord_array(2)-r_0) + self.size[2]/2.0) % self.size[2])
        self.values = np.array([[one_d_vector]])
Пример #6
0
    def __init__(self, width, depth, shape, size):
        import numpy as np
        from utils import heaviside

        # Create a new grid for the potential
        super(OneDWell, self).__init__(shape, size)

        # Define r_0, the center of the well, to be the middle of the grid
        r_0 = size[0] / 2.0

        one_d_vector = depth - depth * heaviside(
            width / 2.0 - abs(self.coord_array(0) - r_0))
        # self.values = np.array([[one_d_vector]])
        self.values = one_d_vector
def f_NPS(L, p_NPS):
    l, a, b, c, du, dd = tuple(L)
    P31_stable = 8.25589 * a + 0.511 * b - 4.67 * dd + 2.16 * du
    S32_stable = -5.025 + 7.95682 * a - 0.511 * b - 4.67 * dd + 2.16 * du
    P32_stable = -(-6.575 + 7.50703 * a - 0.511 * b - 4.67 * dd + 2.16 * du)
    #N14_stable = -1.77143+4.76494*a-0.511*b-4.67*dd+2.16*du
    N14_stable = -1.58793 + 4.76494 * a - 0.511 * b - 4.67 * dd + 2.16 * du
    Cl35_stable = -(-5.30286 + 8.19482 * a - 0.511 * b - 4.67 * dd + 2.16 * du)
    if p_NPS == 1:
        return heaviside(N14_stable)
    if p_NPS == 2:
        return heaviside(P31_stable)+\
               51*heaviside(-S32_stable)*heaviside(P32_stable)+\
                .4*heaviside(-P32_stable)
    elif p_NPS == 3:
        return heaviside(S32_stable)+\
               heaviside(-P31_stable)+heaviside(Cl35_stable)
    else:
        return 1
def f_bio(L, p_bio):
    l, a, b, c, du, dd = tuple(L)
    if p_bio == 1:
        return heaviside(l_bio(L) - l)
    else:
        return 1
def f_conv(L, p_conv):
    l, a, b, c, du, dd = tuple(L)
    if p_conv == 1:
        return heaviside(l - l_conv(L))
    else:
        return 1
def f_TL(L, p_TL):
    l, a, b, c, du, dd = tuple(L)
    if p_TL == 1:
        return heaviside(l - l_TL(L))
    else:
        return 1
def f_IDH(t, G):
    return (t * G + 10**-6) * (1 - t * G) * heaviside(1 - t * G)
def f_setback(t, G):
    return (1 - t * G) * heaviside(1 - t * G)
def f_hj(L, p_hj):  #simplified fraction of earths without hot jupiters
    if p_hj == 1:
        return (1 - (Z_inf / Z_maxpp(L))**2) * heaviside(Z_maxpp(L) - Z_inf)
    else:
        return 1
def f_pstep(L):  #fraction of stars with planets (step function)
    return heaviside(Z_inf - Z_min(L))