def transfer_image(image): # image_tensor = test_transforms(image).float() input = utils.load_image(image) input = input.to(device) output = model(input) output_img = (utils.im_convert(output) * 255.0).astype(np.uint8) return output_img
# the content loss content_loss = torch.mean( (target_features['conv4_2'] - content_features['conv4_2'])**2) # the style loss # initialize the style loss to 0 style_loss = 0 # then add to it for each layer's gram matrix loss for layer in style_weights: # get the "target" style representation for the layer target_feature = target_features[layer] target_gram = utils.gram_matrix(target_feature) _, d, h, w = target_feature.shape # get the "style" style representation style_gram = style_grams[layer] # the style loss for one layer, weighted appropriately layer_style_loss = style_weights[layer] * torch.mean( (target_gram - style_gram)**2) # add to the style loss style_loss += layer_style_loss / (d * h * w) # calculate the *total* loss total_loss = content_weight * content_loss + style_weight * style_loss # update your target image optimizer.zero_grad() total_loss.backward() optimizer.step() cv2.imwrite('saved_images/corgi.png', utils.im_convert(target))
def main(args): i_path = args.input_path m_path = args.mask_path bg_path = args.bg_path np.random.seed(args.seed) torch.manual_seed(args.seed) torch.cuda.manual_seed_all(args.seed) torch.backends.cudnn.deterministic = True camouflage_dir = args.output_dir os.makedirs(camouflage_dir, exist_ok=True) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") VGG = models.vgg19(pretrained=True).features VGG.to(device) for parameter in VGG.parameters(): parameter.requires_grad_(False) style_net = HRNet.HRNet() style_net.to(device) transform = Compose([ Normalize( mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225], ), ToTensorV2(), ]) # try to give fore con_layers more weight so that can get more detail in output iamge style_weights = args.style_weight_dic mask = cv2.imread(m_path, 0) mask = scaling(mask, scale=args.mask_scale) if args.crop: idx_y, idx_x = np.where(mask > 0) x1_m, y1_m, x2_m, y2_m = np.min(idx_x), np.min(idx_y), np.max( idx_x), np.max(idx_y) else: x1_m, y1_m = 0, 0 y2_m, x2_m = mask.shape x2_m, y2_m = 8 * (x2_m // 8), 8 * (y2_m // 8) x1_m = 8 * (x1_m // 8) x2_m = 8 * (x2_m // 8) y1_m = 8 * (y1_m // 8) y2_m = 8 * (y2_m // 8) fore_origin = cv2.cvtColor(cv2.imread(i_path), cv2.COLOR_BGR2RGB) fore_origin = scaling(fore_origin, scale=args.mask_scale) fore = fore_origin[y1_m:y2_m, x1_m:x2_m] mask_crop = mask[y1_m:y2_m, x1_m:x2_m] mask_crop = np.where(mask_crop > 0, 255, 0).astype(np.uint8) kernel = np.ones((15, 15), np.uint8) mask_dilated = cv2.dilate(mask_crop, kernel, iterations=1) origin = cv2.cvtColor(cv2.imread(bg_path), cv2.COLOR_BGR2RGB) h_origin, w_origin, _ = origin.shape h, w = mask_dilated.shape assert h < h_origin, "mask height must be smaller than bg height, and lower mask_scale parameter!!" assert w < w_origin, "mask width must be smaller than bg width, and lower mask_scale parameter!!" print("mask size,height:{},width:{}".format(h, w)) if args.hidden_selected is None: y_start, x_start = recommend(origin, fore, mask_dilated) else: y_start, x_start = args.hidden_selected x1, y1 = x_start + x1_m, y_start + y1_m x2, y2 = x1 + w, y1 + h if y2 > h_origin: y1 -= (y2 - h_origin) y2 = h_origin if x2 > w_origin: x1 -= (x2 - w_origin) x2 = w_origin print("hidden region...,height-{}:{},width-{}:{}".format(y1, y2, x1, x2)) mat_dilated = fore * np.expand_dims( mask_crop / 255, axis=-1) + origin[y1:y2, x1:x2] * np.expand_dims( (mask_dilated - mask_crop) / 255, axis=-1) bg = origin.copy() bg[y1:y2, x1:x2] = fore * np.expand_dims(mask_crop / 255, axis=-1) + origin[ y1:y2, x1:x2] * np.expand_dims(1 - mask_crop / 255, axis=-1) content_image = transform(image=mat_dilated)["image"].unsqueeze(0) style_image = transform(image=origin[y1:y2, x1:x2])["image"].unsqueeze(0) content_image = content_image.to(device) style_image = style_image.to(device) style_features = get_features(style_image, VGG, mode="style") if args.style_all: style_image_all = transform( image=origin)["image"].unsqueeze(0).to(device) style_features = get_features(style_image_all, VGG, mode="style") style_gram_matrixs = {} style_index = {} for layer in style_features: sf = style_features[layer] _, _, h_sf, w_sf = sf.shape mask_sf = (cv2.resize(mask_dilated, (w_sf, h_sf))).flatten() sf_idxes = np.where(mask_sf > 0)[0] gram_matrix = gram_matrix_slice(sf, sf_idxes) style_gram_matrixs[layer] = gram_matrix style_index[layer] = sf_idxes target = content_image.clone().requires_grad_(True).to(device) foreground_features = get_features(content_image, VGG, mode="camouflage") target_features = foreground_features.copy() attention_layers = [ "conv3_1", "conv3_2", "conv3_3", "conv3_4", "conv4_1", "conv4_2", "conv4_3", "conv4_4", ] for u, layer in enumerate(attention_layers): target_feature = target_features[layer].detach().cpu().numpy( ) # output image's feature map after layer attention = attention_map_cv(target_feature) h, w = attention.shape if "conv3" in layer: attention = cv2.resize(attention, (w // 2, h // 2)) * 1 / 4 if u == 0: all_attention = attention else: all_attention += attention all_attention /= 5 max_att, min_att = np.max(all_attention), np.min(all_attention) all_attention = (all_attention - min_att) / (max_att - min_att) if args.erode_border: h, w = all_attention.shape mask_erode = cv2.erode(mask_crop, kernel, iterations=3) mask_erode = cv2.resize(mask_erode, (w, h)) mask_erode = np.where(mask_erode > 0, 1, 0) all_attention = all_attention * mask_erode foreground_attention = torch.from_numpy(all_attention.astype( np.float32)).clone().to(device).unsqueeze(0).unsqueeze(0) b, ch, h, w = foreground_features["conv4_1"].shape mask_f = cv2.resize(mask_dilated, (w, h)) / 255 idx = np.where(mask_f > 0) size = len(idx[0]) mask_f = torch.from_numpy(mask_f.astype( np.float32)).clone().to(device).unsqueeze(0).unsqueeze(0) foreground_chi = foreground_features["conv4_1"] * foreground_attention foreground_chi = foreground_chi.detach().cpu().numpy()[0].transpose( 1, 2, 0) foreground_cosine = cosine_distances(foreground_chi[idx]) background_features = get_features(style_image, VGG, mode="camouflage") idxes = np.where(mask_dilated > 0) n_neighbors, n_jobs, reg = 7, None, 1e-3 nbrs = NearestNeighbors(n_neighbors=n_neighbors + 1, n_jobs=n_jobs) X_origin = origin[y1:y2, x1:x2][idxes] / 255 nbrs.fit(X_origin) X = nbrs._fit_X Weight_Matrix = barycenter_kneighbors_graph(nbrs, n_neighbors=n_neighbors, reg=reg, n_jobs=n_jobs) idx_new = np.where(idxes[0] < (y2 - y1 - 1)) idxes_h = (idxes[0][idx_new], idxes[1][idx_new]) idx_new = np.where(idxes[1] < (x2 - x1 - 1)) idxes_w = (idxes[0][idx_new], idxes[1][idx_new]) mask_norm = mask_crop / 255. mask_norm_torch = torch.from_numpy( (mask_norm).astype(np.float32)).unsqueeze(0).unsqueeze(0).to(device) boundary = (mask_dilated - mask_crop) / 255 boundary = torch.from_numpy( (boundary).astype(np.float32)).unsqueeze(0).unsqueeze(0).to(device) content_loss_epoch = [] style_loss_epoch = [] total_loss_epoch = [] time_start = datetime.datetime.now() epoch = 0 show_every = args.show_every optimizer = optim.Adam(style_net.parameters(), lr=args.lr) steps = args.epoch mse = nn.MSELoss() while epoch <= steps: ############################# ### boundary conceal ######## ############################# target = style_net(content_image).to(device) target = content_image * boundary + target * mask_norm_torch target.requires_grad_(True) target_features = get_features( target, VGG) # extract output image's all feature maps ############################# ### content loss ######### ############################# target_features_content = get_features(target, VGG, mode="content") content_loss = torch.sum((target_features_content['conv4_2'] - foreground_features['conv4_2'])**2) / 2 content_loss *= args.lambda_weights["content"] ############################# ### style loss ######### ############################# style_loss = 0 # compute each layer's style loss and add them for layer in style_weights: target_feature = target_features[ layer] # output image's feature map after layer #target_gram_matrix = get_gram_matrix(target_feature) target_gram_matrix = gram_matrix_slice(target_feature, style_index[layer]) style_gram_matrix = style_gram_matrixs[layer] b, c, h, w = target_feature.shape layer_style_loss = style_weights[layer] * torch.sum( (target_gram_matrix - style_gram_matrix)**2) / ( (2 * c * w * h)**2) #layer_style_loss = style_weights[layer] * torch.mean((target_gram_matrix - style_gram_matrix) ** 2) style_loss += layer_style_loss style_loss *= args.lambda_weights["style"] ############################# ### camouflage loss ######### ############################# target_chi = target_features["conv4_1"] * foreground_attention target_chi = target_chi.detach().cpu().numpy()[0].transpose(1, 2, 0) target_cosine = cosine_distances(target_chi[idx]) leave_loss = (np.mean(np.abs(target_cosine - foreground_cosine)) / 2) leave_loss = torch.Tensor([leave_loss]).to(device) remove_matrix = (1.0 - foreground_attention) * mask_f * ( target_features["conv4_1"] - background_features["conv4_1"]) r_min, r_max = torch.min(remove_matrix), torch.max(remove_matrix) remove_matrix = (remove_matrix - r_min) / (r_max - r_min) remove_loss = (torch.mean(remove_matrix**2) / 2).to(device) camouflage_loss = leave_loss + args.mu * remove_loss camouflage_loss *= args.lambda_weights["cam"] ############################# ### regularization loss ##### ############################# target_renormalize = target.detach().cpu().numpy()[0, :].transpose( 1, 2, 0) target_renormalize = target_renormalize * np.array( (0.229, 0.224, 0.225)) + np.array((0.485, 0.456, 0.406)) target_renormalize = target_renormalize.clip(0, 1)[idxes] target_reconst = torch.from_numpy( (Weight_Matrix * target_renormalize).astype(np.float32)) target_renormalize = torch.from_numpy( target_renormalize.astype(np.float32)) reg_loss = mse(target_renormalize, target_reconst).to(device) reg_loss *= args.lambda_weights["reg"] ############################# ### total variation loss #### ############################# tv_h = torch.pow(target[:, :, 1:, :] - target[:, :, :-1, :], 2).detach().cpu().numpy()[0].transpose(1, 2, 0) tv_w = torch.pow(target[:, :, :, 1:] - target[:, :, :, :-1], 2).detach().cpu().numpy()[0].transpose(1, 2, 0) tv_h_mask = tv_h[:, :, 0][idxes_h] + tv_h[:, :, 1][idxes_h] + tv_h[:, :, 2][idxes_h] tv_w_mask = tv_w[:, :, 0][idxes_w] + tv_w[:, :, 2][idxes_w] + tv_w[:, :, 2][idxes_w] tv_loss = torch.from_numpy( (np.array(np.mean(np.concatenate([tv_h_mask, tv_w_mask]))))).to(device) tv_loss *= args.lambda_weights["tv"] total_loss = content_loss + style_loss + camouflage_loss + reg_loss + tv_loss total_loss_epoch.append(total_loss) style_loss_epoch.append(style_loss) optimizer.zero_grad() total_loss.backward() optimizer.step() if epoch % show_every == 0: print("After %d criterions:" % epoch) print('Total loss: ', total_loss.item()) print('Style loss: ', style_loss.item()) print('camouflage loss: ', camouflage_loss.item()) print('camouflage loss leave: ', leave_loss.item()) print('camouflage loss remove: ', remove_loss.item()) print('regularization loss: ', reg_loss.item()) print('total variation loss: ', tv_loss.item()) print('content loss: ', content_loss.item()) print("elapsed time:{}".format(datetime.datetime.now() - time_start)) canvas = origin.copy() fore_gen = im_convert(target) * 255. sub_canvas = np.vstack( [mat_dilated, fore_gen, origin[y1:y2, x1:x2]]) canvas[y1:y2, x1:x2] = fore_gen * np.expand_dims( mask_norm, axis=-1) + origin[y1:y2, x1:x2] * np.expand_dims( 1.0 - mask_norm, axis=-1) canvas = canvas.astype(np.uint8) if args.save_process: new_path = os.path.join( camouflage_dir, "{}_epoch{}.png".format(args.name, epoch)) cv2.imwrite(new_path, cv2.cvtColor(canvas, cv2.COLOR_RGB2BGR)) cv2.rectangle(canvas, (x1, y1), (x2, y2), (255, 0, 0), 10) cv2.rectangle(canvas, (x1 - x1_m, y1 - y1_m), (x2, y2), (255, 255, 0), 10) canvas = np.vstack([canvas, bg]) h_c, w_c, _ = canvas.shape h_s, w_s, _ = sub_canvas.shape sub_canvas = cv2.resize(sub_canvas, (int(w_s * (h_c / h_s)), h_c)) canvas = np.hstack([sub_canvas, canvas]) canvas = canvas.astype(np.uint8) canvas = cv2.cvtColor(canvas, cv2.COLOR_RGB2BGR) h_show, w_show, c = canvas.shape cv2.imshow( "now camouflage...", cv2.resize( canvas, (w_show // args.show_comp, h_show // args.show_comp))) epoch += 1 if cv2.waitKey(1) & 0xFF == ord('q'): break time_end = datetime.datetime.now() print('totally cost:{}'.format(time_end - time_start)) new_path = os.path.join(camouflage_dir, "{}.png".format(args.name)) canvas = origin.copy() fore_gen = im_convert(target) * 255. canvas[y1:y2, x1:x2] = fore_gen * np.expand_dims(mask_norm, axis=-1) + origin[ y1:y2, x1:x2] * np.expand_dims(1.0 - mask_norm, axis=-1) canvas = canvas.astype(np.uint8) canvas = cv2.cvtColor(canvas, cv2.COLOR_RGB2BGR) cv2.imwrite(new_path, canvas)
import numpy as np import matplotlib.pyplot as plt from utils import load_dataset, im_convert # data path path = 'ants_and_bees' # load_dataset training_loader, validation_loader = load_dataset(path) # classes classes = ('ant', 'bee') dataiter = iter(training_loader) images, labels = dataiter.next() fig = plt.figure(figsize=(25, 4)) for idx in np.arange(20): ax = fig.add_subplot(2, 10, idx + 1, xticks=[], yticks=[]) plt.imshow(im_convert(images[idx])) ax.set_title(classes[labels[idx].item()]) plt.show()
valid = Variable(Tensor(imgs.shape[0], 1).fill_(1.0), requires_grad=False) fake = Variable(Tensor(imgs.shape[0], 1).fill_(0.0), requires_grad=False) real_imgs = Variable(imgs.type(Tensor)) optimizer_G.zero_grad() z = Variable(Tensor(np.random.normal(0, 1, (imgs.shape[0],100,1,1)))) gen_imgs = gen(z) b = dis(gen_imgs) g_loss = adversarial_loss(b, valid) g_loss.backward() optimizer_G.step() optimizer_D.zero_grad() real_loss = adversarial_loss(dis(real_imgs), valid) fake_loss = adversarial_loss(dis(gen_imgs.detach()), fake) d_loss = (real_loss + fake_loss) / 2 d_loss.backward() optimizer_D.step() if(epoch%1==0): a = gen_imgs[0] a = utils.im_convert(a) plt.imshow(a) plt.show() g_losses.append(g_loss.item()) d_losses.append(d_loss.item()) print ("[Epoch %d/%d] [Batch %d/%d] [D loss: %f] [G loss: %f]" % (epoch, 1000, i, len(dataloader), d_loss.item(), g_loss.item())) error_plot(d_losses,g_losses)
import wget from params import * from model import Generator from utils import view_samples, im_convert import torch import argparse from torch.autograd import Variable import numpy as np n = 20 n_col = 5 n_row = 4 wget.download(trained_weights_url) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") #creating generator object gen = Generator().to(device) gen.load_state_dict(torch.load('./dcgan.h5', map_location=device)) #define number of images to generate Tensor = torch.FloatTensor if (torch.cuda.is_available()): Tensor = torch.cuda.FloatTensor z = Variable(Tensor(np.random.normal(0, 1, (n, 100, 1, 1)))) gen_imgs = gen(z) a = [] for i in range(n): b = im_convert(gen_imgs[i]) a.append(b) #enter number of rows and columns in plot such that n_row*n_col=n view_samples(n_row, n_col, a)
ax2.plot(epoch, style_loss_epoch) ax2.set_title("Style loss") ax2.set_xlabel("epoch") ax2.set_ylabel("Style loss") ax3.plot(epoch, content_loss_epoch) ax3.set_title("Content loss") ax3.set_xlabel("epoch") ax3.set_ylabel("Content loss") plt.show() # display the raw images fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(20, 10)) #content and style ims side-by-side ax1.imshow(utils.im_convert(content_image)) ax2.imshow(utils.im_convert(output_image)) plt.show() image = utils.im_convert(output_image) img2 = Image.open('style.png') #opening style.png image from original code print(type(img2)) #class 'PIL.PngImagePlugin.PngImageFile' print(type(image)) #class 'numpy.ndarray' print(type(output_image)) #class 'torch.Tensor' #img = Image.open(BytesIO(image)) #image = Image.fromarray(np.uint8(cm.gist_earth(image)*255)) #plt.imsave("./Datasets/STYLED_IMAGES/{}.jpg".format(steps),image,cmap = 'Greys') #image.save("./Datasets/STYLED_IMAGES/{}.jpg".format(epoch)) #image.save("./Datasets/STYLED_IMAGES/{}.jpg".format(epoch)) #plt.close() ''' checkpoint = {'model': style_net(),
def style_transfer(device, content_image_path, style_image_path, output_image_path, max_size, content_weight, style_weight, steps, show_every, conv_style_weights): ''' Style transfer on a content image. ''' # Extracting and fixing features of pretrained VGG19 vgg = models.vgg19(pretrained=True).features # Preventing any change on the weights of the original model for param in vgg.parameters(): param.requires_grad_(False) # Move the model to the device requested torch.cuda.empty_cache() try: device = torch.device(device) print("The device used is: {}".format(device)) except BaseException: print("Error, the required device is not available") vgg.to(device) # Load in content and style image content = load_image(content_image_path, max_size).to(device) # Resize style to match content style = load_image(style_image_path, max_size, shape=content.shape[-2:]).to(device) # Content and style features before training content_features = get_features(content, vgg) style_features = get_features(style, vgg) # Gram matrices for each layer of our style representation style_grams = { layer: gram_matrix(style_features[layer]) for layer in style_features } # Create a third "target" image and prep it for change target = content.clone().requires_grad_(True).to(device) # Iteration hyperparameters optimizer = optim.Adam([target], lr=0.003) for ii in range(1, steps + 1): # Get the features from your target image target_features = get_features(target, vgg) # The content loss content_loss = torch.mean( (target_features['conv4_2'] - content_features['conv4_2'])**2) # The style loss style_loss = 0 # Add loss for each layer's gram matrix loss for layer in conv_style_weights: # Get the "target" style representation for the layer target_feature = target_features[layer] target_gram = gram_matrix(target_feature) _, d, h, w = target_feature.shape # Get the "style" style representation style_gram = style_grams[layer] # The style loss for one layer, weighted appropriately layer_style_loss = (conv_style_weights[layer] * torch.mean( (target_gram - style_gram)**2)) # Add to the style loss style_loss += layer_style_loss / (d * h * w) # Calculate the *total* loss total_loss = content_weight * content_loss + style_weight * style_loss # Update your target image optimizer.zero_grad() total_loss.backward() optimizer.step() # Display intermediate images and print the loss if ii % show_every == 0: print('Total loss: ', total_loss.item()) plt.imshow(im_convert(target)) plt.axis('off') plt.savefig(output_image_path + "_{}.jpg".format(ii // show_every), bbox_inches='tight', pad_inches=0) # plt.show() plt.imshow(im_convert(target)) plt.axis('off') plt.savefig(output_image_path + "_final.jpg", bbox_inches='tight', pad_inches=0) torch.cuda.empty_cache()