def make_MCpredictionBIS(self, input_img, args):

        im_shape = np.shape(input_img)
        if len(input_img.shape) != 4:
            input_img = np.array([input_img])

        args['4_MCdrop'] = True
        my_dataset, new_net = instantiate_net(args, Train=False)
        new_net.MCDropout = True
        layer_dict = dict([(layer.name, layer) for layer in self.model.layers])
        newlayers = [layer.name for layer in new_net.model.layers]
        for idx, layer_name in enumerate(newlayers):
            if 'Dropout' not in layer_name:
                if layer_name in layer_dict and len(
                        layer_dict[layer_name].get_weights()) > 0:
                    new_net.model.layers[idx].set_weights(
                        layer_dict[layer_name].get_weights())

        n_pred = 30

        mean_pred, var_pred = np.zeros(
            input_img.shape, dtype='uint8'), np.zeros(input_img.shape)
        for i, input_im in enumerate(input_img):
            these_pred = np.zeros(
                (n_pred, input_im.shape[0], input_im.shape[1],
                 1 if self.Grayscale else 3),
                dtype='uint8')
            for j in range(n_pred):
                these_pred[j] = new_net.make_prediction(input_im)
            mean_pred[i] = np.mean(these_pred, axis=0)
            var_pred[i] = np.var(these_pred, axis=0)
        return mean_pred, var_pred
Пример #2
0
    def call_training(this_exp):
        my_dataset, my_net = instantiate_net(this_exp)
        print(
            colored('Start to train the network for experiment : %s.', 'red') %
            (my_net.exp_name))
        my_net.fit(this_exp, my_dataset)
        print(colored('The network is trained.', 'red'))
        my_net.print_learning_curves()
        print('curves printed')

        my_net.load_weights(my_net.exp_name)
        my_net.evaluate(my_dataset)
Пример #3
0
def evaluate_net(args):
    if args['4_ROC'] or args['4_ROC_pixel']:
        for this_exp in args['4_exp']:
            this_args = read_json(root_path + '/Experiments/' + this_exp +
                                  '/00_description.json')
            my_dataset, my_net = instantiate_net(this_args)
            my_net.load_weights(this_exp)
            my_net.evaluate(my_dataset,
                            print_pred=args['4_ROC_printpred'],
                            image_wise=args['4_ROC'],
                            pixel_wise=args['4_ROC_pixel'])

    if args['4_MCdrop'] or args['4_MCdrop_pixel']:
        for this_exp in args['4_exp']:
            this_args = read_json(root_path + '/Experiments/' + this_exp +
                                  '/00_description.json')
            this_args['4_MCdrop'] = True
            _, my_net = instantiate_net(this_args)
            my_net.load_weights(this_exp)
            my_net.evaluate_MCDropout(this_args,
                                      print_pred=args['4_MCdrop_printpred'],
                                      image_wise=args['4_MCdrop'],
                                      pixel_wise=args['4_MCdrop_pixel'])
Пример #4
0
    def evaluate_MCDropout(self, args, print_pred=True, pixel_wise = False, ROC=True, norms=['l0', 'l1', 'l2', 'linf']): 

        args['4_MCdrop']    = True
        my_dataset, new_net = instantiate_net(args, Train=False)
        new_net.MCDropout = True

        # Compute the predictions
        used     = set()
        subsets  = [x for x in my_dataset.test_label_name if x not in used and (used.add(x) or True)]
        all_mask = {}

        for this_subset in subsets: 
            all_mask[this_subset] = my_dataset.mask[my_dataset.test_label_name==this_subset]

        # Infer all the test images
        print('-------start Inference---------')
        print('xxxxxx', self.exp_name)
        all_pred = self.make_MCprediction(my_dataset, new_net, print_pred)
        print('-------end Inference---------')


        # Compute the ROC curve for each type of anomaly 
        subsets.remove('clean')
        for this_subset in subsets:
            y = np.concatenate( (all_pred['clean']['variance'], all_pred[this_subset]['variance']) )
            x = np.zeros(y.shape)
            masks = np.concatenate( (all_mask['clean'], all_mask[this_subset]) )

            binary_test_labels = my_dataset.test_label
            binary_test_labels = np.concatenate(( my_dataset.test_label[my_dataset.test_label_name=='clean'], my_dataset.test_label[my_dataset.test_label_name==this_subset]))
            binary_test_labels[binary_test_labels ==2] = 1
            
            if not pixel_wise: 
                all_TP, all_FP = compute_ROC(x, y, binary_test_labels)
        
                result_path = root_path + '/Results_MCDropout/' + self.exp_name + '/ROC_clean_vs_' + this_subset 
                write_json({'all_TP': all_TP, 'all_FP': all_FP}, result_path + '.json') 
                print_ROC(result_path + '.json', result_path + '.png', AUC=True)
            else : 
                print('------', this_subset)
                TP, FP = compute_ROC_pixel_wise(x, y, masks)

                result_path = root_path + '/Results_MCDropout/' + self.exp_name + '/PIXELWISE_ROC_clean_vs_' + this_subset 
                write_json({'TP': TP, 'FP': FP}, result_path + '.json') 
                print_PIXEL_WISE_ROC(result_path + '.json', result_path + '.png', AUC=True)
        
        # Compute combined ROC curve
        all_def = my_dataset.test_label_name[my_dataset.test_label ==2] 
        used    = set()
        subsets = [x for x in all_def if x not in used and (used.add(x) or True)]

        prediction = None
        for this_subset in subsets : 
            if prediction is None:
                prediction = all_pred[this_subset]['variance']
            else: 
                prediction = np.vstack( (prediction, all_pred[this_subset]['variance']))
     
        y = np.concatenate( ( all_pred['clean']['variance'], prediction) )
        x = np.zeros(y.shape)
        masks = np.concatenate((my_dataset.mask[my_dataset.test_label_name=='clean'], my_dataset.mask[my_dataset.test_label==2]))

        binary_test_labels = np.concatenate(( my_dataset.test_label[my_dataset.test_label_name=='clean'], my_dataset.test_label[my_dataset.test_label==2]))
        binary_test_labels[binary_test_labels ==2] = 1
        if not pixel_wise:
            all_TP, all_FP = compute_ROC(x, y, binary_test_labels)
        
            result_path = root_path + '/Results_MCDropout/' + self.exp_name + '/ROC_clean_vs_realDefaults'
            write_json({'all_TP': all_TP, 'all_FP': all_FP}, result_path + '.json')
            print_ROC(result_path + '.json', result_path + '.png', AUC=True)
        else : 
            TP, FP = compute_ROC_pixel_wise(x, y, masks)

            result_path = root_path + '/Results_MCDropout/' + self.exp_name + '/PIXELWISE_ROC_clean_vs_realDefaults'
            write_json({'TP': TP, 'FP': FP}, result_path + '.json') 
            print_PIXEL_WISE_ROC(result_path + '.json', result_path + '.png', AUC=True)