Пример #1
0
def main():
    url = "D:/workspace-python/2016-04-24 num/"
    train_x_url = url + "train-images.idx3-ubyte"
    train_y_url = url + "train-labels.idx1-ubyte"
    test_x_url = url + "t10k-images.idx3-ubyte"
    test_y_url = url + "t10k-labels.idx1-ubyte"
    category = 3
    # 记录开始时间
    begin = time.time()
    # 构建训练模型的实例
    neural_network = NeuralNetwork(hidden_layer_count=2, hidden_layer_neuron_count=30, alpha=0.01, train_times=99)
    # 训练模型
    x = utils.load_mnist(train_x_url)
    y = utils.load_mnist(train_y_url, is_image=False)
    x, y = utils.get_classify(x, y, category)
    neural_network.train(x, y)
    # 保存模型参数
    # neural_network.save_theta("")
    # 测试模型
    actual = neural_network.predict(x)
    print("回归准确率:%.1f%%" % ((np.mean(y.argmax(1) == actual.argmax(1)) * 100)))
    # x = utils.load_mnist(test_x_url)
    # y = utils.load_mnist(test_y_url, is_image=False)
    # x, y = utils.get_classify(x, y, category)
    actual = neural_network.predict(x)
    print("验证准确率:%.1f%%" % ((np.mean(y.argmax(1) == actual.argmax(1)) * 100)))
    # 记录结束时间
    end = time.time()
    print("执行时间:%.3f分" % ((end - begin) / 60))
Пример #2
0
def demo():
    X,y = utils.load_mnist()
    y = utils.makeMultiClass(y)
    
    # building the SDA
    sDA = StackedDA([100])

    # pre-trainning the SDA
    sDA.pre_train(X[:100], noise_rate=0.3, epochs=1)

    # saving a PNG representation of the first layer
    W = sDA.Layers[0].W.T[:, 1:]
    utils.saveTiles(W, img_shape= (28,28), tile_shape=(10,10), filename="results/res_dA.png")

    # adding the final layer
    sDA.finalLayer(X[:37500], y[:37500], epochs=2)

    # trainning the whole network
    sDA.fine_tune(X[:37500], y[:37500], epochs=2)

    # predicting using the SDA
    pred = sDA.predict(X[37500:]).argmax(1)

    # let's see how the network did
    y = y[37500:].argmax(1)
    e = 0.0
    for i in range(len(y)):
        e += y[i]==pred[i]

    # printing the result, this structure should result in 80% accuracy
    print "accuracy: %2.2f%%"%(100*e/len(y))

    return sDA
Пример #3
0
    def train(self):
        # Initializing the variables
        init = tf.global_variables_initializer()

        data, label, test_data, test_label = utils.load_mnist()
        # Launch the graph
        self.sess.run(init)
        step = 0
        # Keep training until reach max iterations
        while step < self.epochs:
            batch_idxs = len(data) // self.batch_size
            for idx in xrange(batch_idxs):
                batch_x = data[idx*self.batch_size:(idx+1)*self.batch_size]
                batch_y = label[idx*self.batch_size:(idx+1)*self.batch_size]

                # Run optimization op (backprop)
                sess.run(self.optimizer, feed_dict={self.x: batch_x, self.y: batch_y,
                                               self.keep_prob: self.dropout})
                if idx % self.display_step == 0:
                    # Calculate batch loss and accuracy
                    loss, acc = sess.run([self.cost, self.accuracy], feed_dict={self.x: batch_x,
                                                                      self.y: batch_y,
                                                                      self.keep_prob: 1.})
                    print("Epoch " + str(step) + " Iter " + str(idx*self.batch_size) + \
                          ", Minibatch Loss= " + "{:.6f}".format(loss) + \
                          ", Training Accuracy= " + "{:.5f}".format(acc))
            step += 1
            self.test(test_data[:1000], test_label[:1000])

        print("Optimization Finished!")
Пример #4
0
def train_simple_perceptron():
    with Timer("Loading dataset"):
        trainset, validset, testset = load_mnist()

    with Timer("Creating model"):
        # TODO: We should the number of different targets in the dataset,
        #       but I'm not sure how to do it right (keep in mind the regression?).
        output_size = 10
        model = Perceptron(trainset.input_size, output_size)
        model.initialize()  # By default, uniform initialization.

    with Timer("Building optimizer"):
        optimizer = SGD(loss=NLL(model, trainset))
        optimizer.append_update_rule(ConstantLearningRate(0.0001))

    with Timer("Building trainer"):
        # Train for 10 epochs
        batch_scheduler = MiniBatchScheduler(trainset, 100)
        stopping_criterion = tasks.MaxEpochStopping(10)

        trainer = Trainer(optimizer, batch_scheduler, stopping_criterion=stopping_criterion)

        # Print time for one epoch
        trainer.append_task(tasks.PrintEpochDuration())
        trainer.append_task(tasks.PrintTrainingDuration())

        # Print mean/stderror of classification errors.
        classif_error = tasks.ClassificationError(model.use, validset)
        trainer.append_task(tasks.Print("Validset - Classif error: {0:.1%} ± {1:.1%}", classif_error.mean, classif_error.stderror))

    with Timer("Training"):
        trainer.train()
    def __init__(self, args):
        # parameters
        self.epoch = args.epoch
        self.sample_num = 100
        self.batch_size = args.batch_size
        self.save_dir = args.save_dir
        self.result_dir = args.result_dir
        self.dataset = args.dataset
        self.log_dir = args.log_dir
        self.gpu_mode = args.gpu_mode
        self.model_name = args.gan_type

        # networks init
        self.G = generator(self.dataset)
        self.D = discriminator(self.dataset)
        self.G_optimizer = optim.Adam(self.G.parameters(), lr=args.lrG, betas=(args.beta1, args.beta2))
        self.D_optimizer = optim.Adam(self.D.parameters(), lr=args.lrD, betas=(args.beta1, args.beta2))

        if self.gpu_mode:
            self.G.cuda()
            self.D.cuda()
            self.BCE_loss = nn.BCELoss().cuda()
            self.CE_loss = nn.CrossEntropyLoss().cuda()
        else:
            self.BCE_loss = nn.BCELoss()
            self.CE_loss = nn.CrossEntropyLoss()

        print('---------- Networks architecture -------------')
        utils.print_network(self.G)
        utils.print_network(self.D)
        print('-----------------------------------------------')

        # load mnist
        self.data_X, self.data_Y = utils.load_mnist(args.dataset)
        self.z_dim = 62
        self.y_dim = 10

        # fixed noise & condition
        self.sample_z_ = torch.zeros((self.sample_num, self.z_dim))
        for i in range(10):
            self.sample_z_[i*self.y_dim] = torch.rand(1, self.z_dim)
            for j in range(1, self.y_dim):
                self.sample_z_[i*self.y_dim + j] = self.sample_z_[i*self.y_dim]

        temp = torch.zeros((10, 1))
        for i in range(self.y_dim):
            temp[i, 0] = i

        temp_y = torch.zeros((self.sample_num, 1))
        for i in range(10):
            temp_y[i*self.y_dim: (i+1)*self.y_dim] = temp

        self.sample_y_ = torch.zeros((self.sample_num, self.y_dim))
        self.sample_y_.scatter_(1, temp_y.type(torch.LongTensor), 1)
        if self.gpu_mode:
            self.sample_z_, self.sample_y_ = Variable(self.sample_z_.cuda(), volatile=True), Variable(self.sample_y_.cuda(), volatile=True)
        else:
            self.sample_z_, self.sample_y_ = Variable(self.sample_z_, volatile=True), Variable(self.sample_y_, volatile=True)
def create_inputs():
    trX, trY = load_mnist(cfg.dataset, cfg.is_training)

    num_pre_threads = cfg.thread_per_gpu*cfg.num_gpu
    data_queue = tf.train.slice_input_producer([trX, trY], capacity=64*num_pre_threads)
    X, Y = tf.train.shuffle_batch(data_queue, num_threads=num_pre_threads,
                                  batch_size=cfg.batch_size_per_gpu*cfg.num_gpu,
                                  capacity=cfg.batch_size_per_gpu*cfg.num_gpu * 64,
                                  min_after_dequeue=cfg.batch_size_per_gpu*cfg.num_gpu * 32,
                                  allow_smaller_final_batch=False)

    return (X, Y)
Пример #7
0
def demo(structure = [25**2, 23**2, 21**2,19**2,16**2, 15**2]):
    # Getting the data
    X,y = utils.load_mnist()
    
    
    autoencoder = StackedDA([100], alpha=0.01)
    autoencoder.pre_train(X[:1000], 10)
    
    y = utils.makeMultiClass(y)
    autoencoder.fine_tune(X[:1000], y[:1000], learning_layer=200, n_iters=20, alpha=0.01)

    W = autoencoder.W[0].T[:, 1:]
    W = utils.saveTiles(W, img_shape= (28,28), tile_shape=(10,10), filename="Results/res_dA.png")
Пример #8
0
def plot_pca():
    print('loading data')
    X_train, y_train, X_test, y_test = utils.load_mnist()
    pca = PCA(n_components=2)

    print('transforming training data')
    Z_train = pca.fit_transform(X_train)

    print('transforming test data')
    Z_test = pca.transform(X_test)

    plot(Z_train, y_train, Z_test, y_test,
         filename='pca.png', title='projected onto principle components')
Пример #9
0
def useLayers():
    X,y = utils.load_mnist()
    y = utils.makeMultiClass(y)
    
    # Layers
    sDA = StackedDA([100])
    sDA.pre_train(X[:1000], rate=0.5, n_iters=500)
    sDA.finalLayer(y[:1000], learner_size=200, n_iters=1)
    sDA.fine_tune(X[:1000], y[:1000], n_iters=1)
    pred = sDA.predict(X)
    
    W = sDA.Layers[0].W.T[:, 1:]
    W = utils.saveTiles(W, img_shape= (28,28), tile_shape=(10,10), filename="Results/res_dA.png")
    return pred, y
def main(_):
    capsNet = CapsNet(is_training=cfg.is_training)
    tf.logging.info('Graph loaded')
    sv = tf.train.Supervisor(graph=capsNet.graph,
                             logdir=cfg.logdir,
                             save_model_secs=0)

    path = cfg.results + '/accuracy.csv'
    if not os.path.exists(cfg.results):
        os.mkdir(cfg.results)
    elif os.path.exists(path):
        os.remove(path)

    fd_results = open(path, 'w')
    fd_results.write('step,test_acc\n')
    with sv.managed_session() as sess:
        num_batch = int(60000 / cfg.batch_size)
        num_test_batch = 10000 // cfg.batch_size
        teX, teY = load_mnist(cfg.dataset, False)
        for epoch in range(cfg.epoch):
            if sv.should_stop():
                break
            for step in tqdm(range(num_batch), total=num_batch, ncols=70, leave=False, unit='b'):
                global_step = sess.run(capsNet.global_step)
                sess.run(capsNet.train_op)

                if step % cfg.train_sum_freq == 0:
                    _, summary_str = sess.run([capsNet.train_op, capsNet.train_summary])
                    sv.summary_writer.add_summary(summary_str, global_step)

                if (global_step + 1) % cfg.test_sum_freq == 0:
                    test_acc = 0
                    for i in range(num_test_batch):
                        start = i * cfg.batch_size
                        end = start + cfg.batch_size
                        test_acc += sess.run(capsNet.batch_accuracy, {capsNet.X: teX[start:end], capsNet.labels: teY[start:end]})
                    test_acc = test_acc / (cfg.batch_size * num_test_batch)
                    fd_results.write(str(global_step + 1) + ',' + str(test_acc) + '\n')
                    fd_results.flush()
                    summary_str = sess.run(capsNet.test_summary, {capsNet.test_acc: test_acc})
                    sv.summary_writer.add_summary(summary_str, global_step)

            if epoch % cfg.save_freq == 0:
                sv.saver.save(sess, cfg.logdir + '/model_epoch_%04d_step_%02d' % (epoch, global_step))

    fd_results.close()
    tf.logging.info('Training done')
Пример #11
0
def main(args):
    train, valid, _ = load_mnist()

    e = theanets.Experiment(
        theanets.Autoencoder,
        layers=(784, args.features ** 2, 784))

    e.train(train, valid, min_improvement=0.1)

    plot_layers([e.network.find('hid1', 'w'), e.network.find('out', 'w')])
    plt.tight_layout()
    plt.show()

    v = valid[:100]
    plot_images(v, 121, 'Sample data')
    plot_images(e.network.predict(v), 122, 'Reconstructed data')
    plt.tight_layout()
    plt.show()
Пример #12
0
def main(args):
    train, valid, _ = load_mnist()

    e = theanets.Experiment(
        theanets.Autoencoder,
        layers=(784, args.features ** 2, 784))

    e.train(train, valid)

    plot_layers(e.network.weights)
    plt.tight_layout()
    plt.show()

    v = valid[:100]
    plot_images(v, 121, 'Sample data')
    plot_images(e.network.predict(v), 122, 'Reconstructed data')
    plt.tight_layout()
    plt.show()
Пример #13
0
def main(args):
    # load up the MNIST digit dataset.
    train, valid, _ = load_mnist()

    net = theanets.Autoencoder([784, args.features ** 2, 784], rng=42)
    net.train(
        train,
        valid,
        input_noise=0.1,
        weight_l2=0.0001,
        algo="rmsprop",
        momentum=0.9,
        max_updates=1,
        min_improvement=0.1,
    )

    plot_layers([net.find("hid1", "w"), net.find("out", "w")])
    plt.tight_layout()
    plt.show()
Пример #14
0
def main(args):
    # load up the MNIST digit dataset.
    train, valid, _ = load_mnist()

    net = theanets.Autoencoder([784, args.features ** 2, 784])
    net.train(train, valid,
              input_noise=0.1,
              weight_l2=0.0001,
              algo='rmsprop',
              momentum=0.9,
              min_improvement=0.1)

    plot_layers([net.find('hid1', 'w'), net.find('out', 'w')])
    plt.tight_layout()
    plt.show()

    v = valid[:100]
    plot_images(v, 121, 'Sample data')
    plot_images(net.predict(v), 122, 'Reconstructed data')
    plt.tight_layout()
    plt.show()
Пример #15
0
def plot_autoencoder(weightsfile):
    print('building model')
    layers = model.build_model()

    batch_size = 128

    print('compiling theano function')
    encoder_func = theano_funcs.create_encoder_func(layers)

    print('loading weights from %s' % (weightsfile))
    model.load_weights([
        layers['l_decoder_out'],
        layers['l_discriminator_out'],
    ], weightsfile)

    print('loading data')
    X_train, y_train, X_test, y_test = utils.load_mnist()

    train_datapoints = []
    print('transforming training data')
    for train_idx in get_batch_idx(X_train.shape[0], batch_size):
        X_train_batch = X_train[train_idx]
        train_batch_codes = encoder_func(X_train_batch)
        train_datapoints.append(train_batch_codes)

    test_datapoints = []
    print('transforming test data')
    for test_idx in get_batch_idx(X_test.shape[0], batch_size):
        X_test_batch = X_test[test_idx]
        test_batch_codes = encoder_func(X_test_batch)
        test_datapoints.append(test_batch_codes)

    Z_train = np.vstack(train_datapoints)
    Z_test = np.vstack(test_datapoints)

    plot(Z_train, y_train, Z_test, y_test,
         filename='adversarial_train_val.png',
         title='projected onto latent space of autoencoder')
Пример #16
0
    def __init__(self,
                 seq_len,
                 batch_size,
                 dataset='mnist',
                 set='train',
                 rng=None,
                 infinite=True,
                 digits=None):

        if dataset == 'fashion_mnist':
            (x_train, y_train), (x_test, y_test) = utils.load_fashion_mnist()
            if set == 'train':
                self.x = x_train
                self.y = y_train
            else:
                self.x = x_test
                self.y = y_test
        elif dataset == 'mnist':
            (x_train, y_train), (x_test, y_test) = utils.load_mnist()
            if set == 'train':
                self.x = x_train
                self.y = y_train
            elif set == 'test':
                self.x = x_test
                self.y = y_test
        elif dataset == 'cifar10':
            self.x, self.y = utils.load_cifar('data/cifar', subset=set)
            self.x = np.transpose(self.x,
                                  (0, 2, 3, 1))  # (N,3,32,32) -> (N,32,32,3)
            self.x = np.float32(self.x)
            self.img_shape = self.x.shape[1:]
            self.input_dim = np.prod(self.img_shape)
        else:
            raise ValueError('wrong dataset name')

        if dataset == 'mnist' or dataset == 'fashion_mnist':
            self.input_dim = self.x.shape[-1]
            self.img_shape = (int(np.sqrt(self.input_dim)),
                              int(np.sqrt(self.input_dim)), 1)
            self.x = np.reshape(self.x, (self.x.shape[0], ) + self.img_shape)
            self.x = np.float32(self.x)

        self.classes = np.unique(self.y)
        self.n_classes = len(self.classes)
        self.y2idxs = {}
        self.nsamples = 0
        for i in list(self.classes):
            self.y2idxs[i] = np.where(self.y == i)[0]
            self.nsamples += len(self.y2idxs[i])

        self.batch_size = batch_size
        self.seq_len = seq_len
        self.rng = np.random.RandomState(42) if not rng else rng
        self.infinite = infinite
        self.digits = digits if digits is not None else np.arange(
            self.n_classes)

        print(set, 'dataset size:', self.x.shape)
        print(set, 'N classes', self.n_classes)
        print(set, 'min, max', np.min(self.x), np.max(self.x))
        print(set, 'nsamples', self.nsamples)
        print(set, 'digits', self.digits)
        print('--------------')
Пример #17
0
def save_data():
    print('-' * 10 + 'SAVING DATA TO DISK' + '-' * 10 + '\n')
    MODEL_PATH = './model/'
    DATA_PATH = './data/'

    if not os.path.exists(MODEL_PATH):
        os.makedirs(MODEL_PATH)

    if not os.path.exists(DATA_PATH):
        os.makedirs(DATA_PATH)

    # Choosing dataset
    if "local" in args.dataset:
        print("USING LOCAL DATASET")
        x, y, test_x, test_y = load_dataset(args.train_feat, args.train_label,
                                            args.test_feat, args.train_label)
    elif "mnist" in args.dataset:
        print("USING MNIST DATASET")
        x, y, test_x, test_y = load_mnist()
    elif "cifar10" in args.dataset:
        print("USING CIFAR10 DATASET")
        x, y, test_x, test_y = load_cifar10()

    # x, y, test_x, test_y = load_cifar10()
    if test_x is None:
        print('Splitting train/test data with ratio {}/{}'.format(
            1 - args.test_ratio, args.test_ratio))
        x, test_x, y, test_y = train_test_split(x,
                                                y,
                                                test_size=args.test_ratio,
                                                stratify=y)

    # need to partition target and shadow model data
    assert len(x) > 2 * args.target_data_size

    target_data_indices, shadow_indices = get_data_indices(
        len(x), target_train_size=args.target_data_size)
    np.savez(MODEL_PATH + 'data_indices.npz', target_data_indices,
             shadow_indices)

    # target model's data
    print('Saving data for target model')
    train_x, train_y = x[target_data_indices], y[target_data_indices]
    size = len(target_data_indices)
    if size < len(test_x):
        test_x = test_x[:size]
        test_y = test_y[:size]
    # save target data
    np.savez(DATA_PATH + 'target_data.npz', train_x, train_y, test_x, test_y)

    # shadow model's data
    target_size = len(target_data_indices)
    shadow_x, shadow_y = x[shadow_indices], y[shadow_indices]
    shadow_indices = np.arange(len(shadow_indices))

    for i in range(args.n_shadow):
        print('Saving data for shadow model {}'.format(i))
        shadow_i_indices = np.random.choice(shadow_indices,
                                            2 * target_size,
                                            replace=False)
        shadow_i_x, shadow_i_y = shadow_x[shadow_i_indices], shadow_y[
            shadow_i_indices]
        train_x, train_y = shadow_i_x[:target_size], shadow_i_y[:target_size]
        test_x, test_y = shadow_i_x[target_size:], shadow_i_y[target_size:]
        np.savez(DATA_PATH + 'shadow{}_data.npz'.format(i), train_x, train_y,
                 test_x, test_y)
Пример #18
0
def test_dA(learning_rate=0.1, training_epochs=15,
            dataset='mnist.pkl.gz',
            batch_size=20, output_folder='dA_plots'):

    """
    This demo is tested on MNIST

    :type learning_rate: float
    :param learning_rate: learning rate used for training the DeNosing
                          AutoEncoder

    :type training_epochs: int
    :param training_epochs: number of epochs used for training

    :type dataset: string
    :param dataset: path to the picked dataset

    """
    datasets = load_mnist(dataset)
    train_set_x, train_set_y = datasets[0]

    # compute number of minibatches for training, validation and testing
    n_train_batches = train_set_x.get_value(borrow=True).shape[0] / batch_size

    # allocate symbolic variables for the data
    index = T.lscalar()    # index to a [mini]batch
    x = T.matrix('x')  # the data is presented as rasterized images

    if not os.path.isdir(output_folder):
        os.makedirs(output_folder)
    os.chdir(output_folder)
    # BUILDING THE MODEL NO CORRUPTION #

    rng = numpy.random.RandomState(123)
    theano_rng = RandomStreams(rng.randint(2 ** 30))

    da = dA(
        numpy_rng=rng,
        theano_rng=theano_rng,
        input=x,
        n_visible=28 * 28,
        n_hidden=500
    )

    cost, updates = da.get_cost_updates(
        corruption_level=0.3,
        learning_rate=learning_rate
    )

    train_da = theano.function(
        [index],
        cost,
        updates=updates,
        givens={
            x: train_set_x[index * batch_size: (index + 1) * batch_size]
        }
    )

    start_time = time.clock()

    # TRAINING #

    # go through training epochs
    for epoch in xrange(training_epochs):
        # go through trainng set
        c = []
        for batch_index in xrange(n_train_batches):
            c.append(train_da(batch_index))

        print 'Training epoch %d, cost ' % epoch, numpy.mean(c)

    end_time = time.clock()

    training_time = (end_time - start_time)

    print >> sys.stderr, ('The no corruption code for file ' +
                          os.path.split(__file__)[1] +
                          ' ran for %.2fm' % ((training_time) / 60.))
    image = Image.fromarray(
        tile_raster_images(X=da.W.get_value(borrow=True).T,
                           img_shape=(28, 28), tile_shape=(10, 10),
                           tile_spacing=(1, 1)))
    image.save('filters_corruption_0.png')

    # BUILDING THE MODEL CORRUPTION 30% #

    rng = numpy.random.RandomState(123)
    theano_rng = RandomStreams(rng.randint(2 ** 30))

    da = dA(
        numpy_rng=rng,
        theano_rng=theano_rng,
        input=x,
        n_visible=28 * 28,
        n_hidden=500
    )

    cost, updates = da.get_cost_updates(
        corruption_level=0.3,
        learning_rate=learning_rate
    )

    train_da = theano.function(
        [index],
        cost,
        updates=updates,
        givens={
            x: train_set_x[index * batch_size: (index + 1) * batch_size]
        }
    )

    start_time = time.clock()

    # TRAINING #

    # go through training epochs
    for epoch in xrange(training_epochs):
        # go through trainng set
        c = []
        for batch_index in xrange(n_train_batches):
            c.append(train_da(batch_index))

        print 'Training epoch %d, cost ' % epoch, numpy.mean(c)

    end_time = time.clock()

    training_time = (end_time - start_time)

    print >> sys.stderr, ('The 30% corruption code for file ' +
                          os.path.split(__file__)[1] +
                          ' ran for %.2fm' % (training_time / 60.))

    image = Image.fromarray(tile_raster_images(
        X=da.W.get_value(borrow=True).T,
        img_shape=(28, 28), tile_shape=(10, 10),
        tile_spacing=(1, 1)))
    image.save('filters_corruption_30.png')

    os.chdir('../')
Пример #19
0
import matplotlib.pyplot as plt
import numpy as np
import theanets

from utils import load_mnist, plot_layers, plot_images


class WeightInverse(theanets.Regularizer):
    def loss(self, layers, outputs):
        return sum((1 / (w * w).sum(axis=0)).sum()
                   for l in layers for w in l.params
                   if w.ndim > 1)


(train, ), (valid, ), _ = load_mnist()

# mean-center the digits and compute a pca whitening transform.

m = train.mean(axis=0)
train -= m
valid -= m

theanets.log('computing whitening transform')
vals, vecs = np.linalg.eigh(np.dot(train.T, train) / len(train))
vals = vals[::-1]
vecs = vecs[:, ::-1]

K = 197  # this retains 99% of the variance in the digit data.
vals = np.sqrt(vals[:K])
vecs = vecs[:, :K]
Пример #20
0
logging = climate.get_logger('mnist-rica')

climate.enable_default_logging()


class RICA(theanets.Autoencoder):
    def J(self, weight_inverse=0, **kwargs):
        cost, mon, upd = super(RICA, self).J(**kwargs)
        if weight_inverse > 0:
            cost += sum((weight_inverse / (w * w).sum(axis=0)).sum()
                        for l in self.layers for w in l.weights)
        return cost, mon, upd


train, valid, _ = load_mnist()

# mean-center the digits and compute a pca whitening transform.

train -= 0.5
valid -= 0.5

logging.info('computing whitening transform')
vals, vecs = np.linalg.eigh(np.dot(train.T, train) / len(train))
vals = vals[::-1]
vecs = vecs[:, ::-1]

K = 197  # this retains 99% of the variance in the digit data.
vals = np.sqrt(vals[:K])
vecs = vecs[:, :K]
Пример #21
0
    def eval_obj(self, w):
        """evaluate objective value at w"""
        w = np.array(w, copy=False)
        X, Y = self.features, self.labels
        f, self.df = self.sess.run([self.loss, self.grads],
                                   feed_dict={self.x: X, self.y: Y, self.w: w})
        return f

    def eval_grad(self, w, df):
        """evaluate gradient at w and write it to df"""
        df = np.array(df, copy=False)
        np.copyto(df, self.df)


X, y = load_mnist()
probs = []
probs.append(LogregExecutor(X, y))
try:
    import tensorflow as tf
    probs.append(LogregTensorExecutor(X, y))
except ImportError:
    print "No Tensoflow found: skip the example."


for prob in probs:
    descend(prob, initial_stepsize=0.0001, verbose=5,
            max_iter=10, l1_reg=0.002, precision='f')
# ------------------------------------------------------------------------------

Пример #22
0
# Add layers
model.add_layer('FC-1', FCLayer(784, 128))
model.add_layer('Tanh1', Tanh())
model.add_layer('FC-2', FCLayer(128, 32))
model.add_layer('Tanh2', Tanh())
model.add_layer('FC-3', FCLayer(32, 10))
model.add_layer('Softmax Layer', SoftmaxLayer())


# =========================================================================
assert dataset in ['mnist', 'fashion_mnist']

# Dataset
if dataset == 'mnist':
    x_train, y_train, x_test, y_test = load_mnist('./data')
else:
    x_train, y_train, x_test, y_test = load_fashion_mnist('./data')

x_train, x_test = np.squeeze(x_train), np.squeeze(x_test)

# Random 10% of train data as valid data
num_train = len(x_train)
perm = np.random.permutation(num_train)
num_valid = int(len(x_train) * 0.1)

valid_idx = perm[:num_valid]
train_idx = perm[num_valid:]

x_valid, y_valid = x_train[valid_idx], y_train[valid_idx]
x_train, y_train = x_train[train_idx], y_train[train_idx]
Пример #23
0
import utils
from tensorflow.examples.tutorials.mnist import input_data
import tensorflow as tf
import numpy as np
from flip_gradient import flip_gradient
from keras.datasets import mnist

# s data, usps
xs, ys, xs_test, ys_test = utils.load_s_usps()
# t data, mnist
xt, yt, xt_test, yt_test = utils.load_mnist()

# config
l2_param = 1e-5
lr = 1e-4
batch_size = 64
num_steps = 50000
coral_param = 0.01
dann_param = 0.05
grl_lambda = 1
with tf.name_scope('input'):
    x = tf.placeholder("float", shape=[None, 2025])
    y_ = tf.placeholder("float", shape=[None, 10])
    x_image = tf.reshape(x, [-1, 45, 45, 1])
    train_flag = tf.placeholder(tf.bool)

with tf.name_scope('feature_generator'):
    W_conv1 = utils.weight_variable([5, 5, 1, 32], 'conv1_weight')
    b_conv1 = utils.bias_variable([32], 'conv1_bias')
    h_conv1 = tf.nn.relu(utils.conv2d(x_image, W_conv1) + b_conv1)
    h_pool1 = utils.max_pool_2x2(h_conv1)
Пример #24
0
def i_main(EPOCH, MODEL_PATH):
    train, valid, _ = load_mnist(samplewise_normalize=True)

    model = ResNet50(MODEL_PATH)
    model.fit((train[0], train[1]), (valid[0], valid[1]), EPOCH)
Пример #25
0
def main():
    EPOCH, MODEL_PATH = arg_parser()
    train, valid, _ = load_mnist(samplewise_normalize=True)

    model = ResNet50(MODEL_PATH)
    model.fit((train[0], train[1]), (valid[0], valid[1]), EPOCH)
Пример #26
0
    preds = (zip(x, y) >> vec2img >> build_pred_batch >> network.predict() >>
             nf.Map(np.argmax) >> nf.Collect())
    (zip(x, y, preds) >> vec2img >> filter_error >> make_label >> view_image >>
     nf.Consume())


def view_augmented_images(x, y, n=10):
    """Show n augmented images"""
    view_image = nm.ViewImageAnnotation(0, 1, pause=1)
    zip(x, y) >> vec2img >> augment >> nf.Take(n) >> view_image >> nf.Consume()


if __name__ == '__main__':
    print('loading data...')
    filepath = download_mnist()
    x_train, y_train, x_test, y_test = load_mnist(filepath)

    print('creating model...')
    device = 'cuda:0' if torch.cuda.is_available() else 'cpu'
    model = Model(device)
    network = PytorchNetwork(model)
    network.load_weights()
    network.print_layers((1, 28, 28))

    print('training ...')
    train(network, x_train, y_train, epochs=3)
    network.save_weights()

    print('evaluating ...')
    print('train acc:', evaluate(network, x_train, y_train))
    print('test  acc:', evaluate(network, x_test, y_test))
Пример #27
0
# ax_kmeans = plt.subplot(223)
# ax_kmeans.imshow(china_kmeans)
# ax_kmeans.set_title('Quantized image (64 colors, K-Means)')
#
# ax_random = plt.subplot(224)
# ax_random.imshow(china_random)
# ax_random.set_title('Quantized image (64 colors, random)')
#
# plt.show()

#-------------------------------------------------------------------------------
# Part 3 - Autoencoders
#-------------------------------------------------------------------------------

# Load data
x_train, y_train, x_test, y_test = utils.load_mnist()

# Load noisy data
x_train_noisy, _, x_test_noisy, _ = utils.load_mnist(noisy=True)

#-------------------------------------------------------------------------------
# Part 3.1 - Image reconstruction with autoencoders
#-------------------------------------------------------------------------------

# Parameters
batch_size = 256
epochs = 50
original_dim = 784
encoding_dim = 32

# Build autoencoder
Пример #28
0
try:
    # Main autoencoder config file
    cp = utils.load_config(sys.argv[1])
except:
    print 'Help: ./train.py <path to main autoencoder ini file> <run number>'
    exit()

# Trying to reduce stochastic behaviours
SEED = cp.getint('Experiment', 'SEED')
tf.set_random_seed(SEED)
np.random.seed(SEED)

# Load dataset
inp_path = cp.get('Experiment', 'DATAINPUTPATH')
if inp_path == '':
    dataset = utils.load_mnist(
        val_size=cp.getint('Experiment', 'VALIDATIONSIZE'))
else:
    dataset = utils.load_data(inp_path)

# Create save directory if it doesn't exist (Primary AE)

directory = cp.get('Experiment', 'ModelOutputPath')
if not os.path.exists(directory):
    os.makedirs(directory)

##############################################################################
# Initializing save paths
##############################################################################

out = cp.get('Experiment', 'ModelOutputPath')
out_ = out.split('/')[0] + '/' + out.split('/')[1] + '/' + \
Пример #29
0
    def __init__(self, args):

        print("\n# Hyperparameters", file=sys.stderr)
        pprint.pprint(args.__dict__, stream=sys.stderr)

        print("\n# Data", file=sys.stderr)
        print(" - Standard MNIST", file=sys.stderr)
        print(" - digit_dim=%d*%d" % (args.height, args.width),
              file=sys.stderr)
        print(" - data_dim=%d*%d" % (args.height, args.width), file=sys.stderr)
        train_loader, valid_loader, test_loader = load_mnist(
            args.batch_size,
            save_to='{}/std/{}x{}'.format(args.data_dir, args.height,
                                          args.width),
            height=args.height,
            width=args.width)

        x_size = args.height * args.width
        z_size = args.latent_size
        y_size = 10 if args.conditional else 0

        # Configure prior
        if args.prior == 'gaussian':
            prior_type = Normal
            if len(args.prior_params) != 2:
                raise ValueError(
                    "A Gaussian prior takes two parameters (loc, scale)")
            if args.prior_params[1] <= 0:
                raise ValueError(
                    "The Gaussian scale must be strictly positive")
            if args.posterior not in ["gaussian"]:
                raise ValueError(
                    "Pairing a Gaussian prior with a %s posterior is not a good idea"
                    % args.posterior)
        elif args.prior == 'beta':
            prior_type = Beta
            if len(args.prior_params) != 2:
                raise ValueError(
                    "A Beta prior takes two parameters (shape_a, shape_b)")
            if args.prior_params[0] <= 0 or args.prior_params[1] <= 0:
                raise ValueError(
                    "The Beta shape parameters must be strictly positive")
            if args.posterior not in ["kumaraswamy"]:
                raise ValueError(
                    "Pairing a Beta prior with a %s posterior is not a good idea"
                    % args.posterior)
        else:
            raise ValueError("Unknown prior: %s" % args.prior)
        p_z = PriorLayer(event_shape=z_size,
                         dist_type=prior_type,
                         params=args.prior_params)

        # Configure likelihood
        if args.likelihood == 'bernoulli':
            likelihood_type = Bernoulli
            decoder_outputs = 1 * x_size
        else:
            raise ValueError("Unknown likelihood: %s" % args.likelihood)

        if args.decoder == 'basic':
            likelihood_conditioner = FFConditioner(
                input_size=z_size + y_size,
                output_size=decoder_outputs,
                context_size=y_size,
                hidden_sizes=args.hidden_sizes)
        elif args.decoder == 'cnn':
            likelihood_conditioner = TransposedConv2DConditioner(
                input_size=z_size + y_size,
                output_size=decoder_outputs,
                context_size=y_size,
                input_channels=32,
                output_channels=decoder_outputs // x_size,
                last_kernel_size=7)
        elif args.decoder == 'made':
            likelihood_conditioner = MADEConditioner(
                input_size=x_size + z_size + y_size,
                output_size=decoder_outputs,
                context_size=z_size + y_size,
                hidden_sizes=args.hidden_sizes,
                num_masks=1)
        else:
            raise ValueError("Unknown decoder: %s" % args.decoder)

        if args.decoder == 'made':
            conditional_x = AutoregressiveLikelihood(
                event_size=x_size,
                dist_type=likelihood_type,
                conditioner=likelihood_conditioner)
        else:
            conditional_x = FullyFactorizedLikelihood(
                event_size=x_size,
                dist_type=likelihood_type,
                conditioner=likelihood_conditioner)

        # CPU/CUDA device
        device = torch.device(args.device)

        # Create generative model P(z)P(x|z)
        gen_model = GenerativeModel(x_size=x_size,
                                    z_size=z_size,
                                    y_size=y_size,
                                    prior_z=p_z,
                                    conditional_x=conditional_x).to(device)
        print("\n# Generative Model", file=sys.stderr)
        print(gen_model, file=sys.stderr)

        # Configure posterior
        # Z|x,y
        if args.posterior == 'gaussian':
            encoder_outputs = z_size * 2
            posterior_type = Normal
        elif args.posterior == 'kumaraswamy':
            encoder_outputs = z_size * 2
            posterior_type = Kumaraswamy
        else:
            raise ValueError("Unknown posterior: %s" % args.posterior)

        if args.encoder == 'basic':
            conditioner = FFConditioner(input_size=x_size + y_size,
                                        output_size=encoder_outputs,
                                        hidden_sizes=args.hidden_sizes)
        elif args.encoder == 'cnn':
            conditioner = Conv2DConditioner(input_size=x_size + y_size,
                                            output_size=encoder_outputs,
                                            context_size=y_size,
                                            width=args.width,
                                            height=args.height,
                                            output_channels=256,
                                            last_kernel_size=7)
        else:
            raise ValueError("Unknown encoder architecture: %s" % args.encoder)

        q_z = ConditionalLayer(event_size=z_size,
                               dist_type=posterior_type,
                               conditioner=conditioner)

        inf_model = InferenceModel(x_size=x_size,
                                   z_size=z_size,
                                   y_size=y_size,
                                   conditional_z=q_z).to(device)
        print("\n# Inference Model", file=sys.stderr)
        print(inf_model, file=sys.stderr)

        print("\n# Optimizers", file=sys.stderr)
        gen_opt = get_optimizer(args.gen_opt, gen_model.parameters(),
                                args.gen_lr, args.gen_l2_weight,
                                args.gen_momentum)
        gen_scheduler = ReduceLROnPlateau(gen_opt,
                                          factor=0.5,
                                          patience=args.patience,
                                          early_stopping=args.early_stopping,
                                          mode='max',
                                          threshold_mode='abs')
        print(gen_opt, file=sys.stderr)

        inf_z_opt = get_optimizer(args.inf_z_opt, inf_model.parameters(),
                                  args.inf_z_lr, args.inf_z_l2_weight,
                                  args.inf_z_momentum)
        inf_z_scheduler = ReduceLROnPlateau(inf_z_opt,
                                            factor=0.5,
                                            patience=args.patience,
                                            mode='max',
                                            threshold_mode='abs')
        print(inf_z_opt, file=sys.stderr)

        self.optimizers = {'gen': gen_opt, 'inf_z': inf_z_opt}
        self.schedulers = {'gen': gen_scheduler, 'inf_z': inf_z_scheduler}

        self.train_loader = train_loader
        self.valid_loader = valid_loader
        self.test_loader = test_loader
        self.models = {'gen': gen_model, 'inf': inf_model}
        self.args = args
Пример #30
0
    def __init__(self, sess, epoch, batch_size, z_dim, dataset_name,
                 checkpoint_dir, sample_dir, log_dir, mode):
        self.sess = sess
        self.epoch = epoch
        self.batch_size = batch_size
        self.checkpoint_dir = checkpoint_dir
        self.sample_dir = sample_dir
        self.log_dir = log_dir
        self.dataset_name = dataset_name
        self.z_dim = z_dim
        self.random_seed = 1000

        if dataset_name == 'mnist' or dataset_name == 'fashion-mnist':
            #image_dimension
            self.imgH = 28
            self.imgW = 28

            #the size of the first layer of generator
            self.s_size = 3
            #arguments for the last layer of generator
            self.last_dconv = {
                'kernel_size': [5, 5],
                'stride': 1,
                'padding': 'VALID'
            }
            #depths for convolution in generator and discriminator
            self.g_depths = [512, 256, 128, 64]
            self.d_depths = [64, 128, 256, 512]

            #channel
            self.c_dim = 1

            #WGAN parameter, the number of critic iterations for each epoch
            self.d_iters = 1
            self.g_iters = 1

            #train
            self.learning_rate = 0.0002
            self.beta1 = 0.5
            self.beta2 = 0.9

            #test, number of generated images to be saved
            self.sample_num = 100

            #load numpy array of images and labels
            self.images = load_mnist(self.dataset_name)

        elif dataset_name == 'anime':
            #image_dimension
            self.imgH = 64
            self.imgW = 64

            #the size of the first layer of generator
            self.s_size = 4
            #arguments for the last layer of generator, same as the general
            self.last_dconv = {}

            #depths for convolution in generator and discriminator
            self.g_depths = [512, 256, 128, 64]
            self.d_depths = [64, 128, 256, 512]

            #channel dim
            self.c_dim = 3

            #WGAN parameter, the number of critic iterations for each epoch
            self.d_iters = 1
            self.g_iters = 1

            #train
            self.learning_rate = 0.0002
            self.beta1 = 0.5
            self.beta2 = 0.9

            #test, number of generated images to be saved
            self.sample_num = 64

            self.images = load_anime(self.dataset_name)

        else:
            raise NotImplementedError
Пример #31
0
    # inputs
    input_shape = (1, 28, 28)
    epochs = 10
    batch_size = 1
    log_dir = './summaries/test_dir/'

    # make VAE
    vae = CholletVAE(input_shape, log_dir)

    # compile VAE
    from keras import optimizers
    optimizer = optimizers.Adam(lr=1e-3)
    vae.compile(optimizer=optimizer)

    # get dataset
    import utils
    (X_train, _), (X_test, _) = utils.load_mnist()
    train_generator = utils.make_generator(X_train, batch_size=batch_size)
    test_generator = utils.make_generator(X_test, batch_size=batch_size)

    # print summaries
    vae.print_model_summaries()

    # fit VAE
    steps_per_epoch = int(len(X_train) / batch_size)
    validation_steps = int(len(X_test) / batch_size)
    vae.fit_generator(train_generator,
                      epochs=epochs,
                      steps_per_epoch=steps_per_epoch,
                      validation_data=test_generator,
                      validation_steps=validation_steps)
Пример #32
0
import warnings
import flwr as fl
import numpy as np

from sklearn.linear_model import LogisticRegression
from sklearn.metrics import log_loss

import utils

if __name__ == "__main__":
    # Load MNIST dataset from https://www.openml.org/d/554
    (X_train, y_train), (X_test, y_test) = utils.load_mnist()

    # Split train set into 10 partitions and randomly use one for training.
    partition_id = np.random.choice(10)
    (X_train, y_train) = utils.partition(X_train, y_train, 10)[partition_id]

    # Create LogisticRegression Model
    model = LogisticRegression(
        penalty="l2",
        max_iter=1,  # local epoch
        warm_start=True,  # prevent refreshing weights when fitting
    )

    # Setting initial parameters, akin to model.compile for keras models
    utils.set_initial_params(model)

    # Define Flower client
    class MnistClient(fl.client.NumPyClient):
        def get_parameters(self):  # type: ignore
            return utils.get_model_parameters(model)
def experiment(network_conf_json, reshape_mode="conv"):
    reshape_funs = {
        "conv": lambda d: d.reshape(-1, 28, 28, 1),
        "mlp": lambda d: d.reshape(-1, 784)
    }

    xtrain, ytrain, xtest, ytest = utils.load_mnist()
    reshape_fun = reshape_funs[reshape_mode]
    xtrain, xtest = reshape_fun(xtrain), reshape_fun(xtest)

    xtrain, ytrain, xval, yval = utils.create_validation(xtrain, ytrain)

    mnist_c_errors = []
    mnist_pred_bits = []
    mnist_class_bits = []

    xm_c_errors = []
    xm_pred_bits = []
    xm_class_bits = []

    ob_c_errors = []
    ob_pred_bits = []
    ob_class_bits = []

    xm_data = utils.load_processed_data("xiaoming_digits")
    ob_data = utils.load_processed_data("Oleks_digits")

    xm_digits = reshape_fun(utils.normalize_data(list(xm_data.values())[0]))
    xm_labels = utils.create_one_hot(xm_data["labels"])

    ob_digits = reshape_fun(utils.normalize_data(list(ob_data.values())[0]))
    ob_labels = utils.create_one_hot(ob_data["labels"])

    for ensemble_size in ensemble_sizes:
        # Building the ensemble models and training the networks
        print("===== Building the ensemble of size %s =====" % ensemble_size)

        inputs, outputs, train_model, model_list, merge_model = ann.build_ensemble(
            [network_conf_json],
            pop_per_type=ensemble_size,
            merge_type="Average")
        train_model.compile(optimizer="adam",
                            loss="categorical_crossentropy",
                            metrics=['accuracy'])
        train_model.fit([xtrain] * ensemble_size, [ytrain] * ensemble_size,
                        batch_size=100,
                        verbose=1,
                        validation_data=([xval] * ensemble_size,
                                         [yval] * ensemble_size),
                        epochs=num_epochs)

        # Calculating classification errors
        print("===== Calculating classification errors =====")

        mnist_c_errors.append(
            ann.test_model(merge_model, [xtest] * ensemble_size,
                           ytest,
                           metric="c_error"))
        xm_c_errors.append(
            ann.test_model(merge_model, [xm_digits] * ensemble_size,
                           xm_labels,
                           metric="c_error"))
        ob_c_errors.append(
            ann.test_model(merge_model, [ob_digits] * ensemble_size,
                           ob_labels,
                           metric="c_error"))

        # Calculating ensemble prediciton entropy
        print("===== Calculating ensemble prediciton entropy =====")

        mnist_pred_bits.append(
            np.mean(
                calc_shannon_entropy(
                    merge_model.predict([xtest] * ensemble_size))))
        xm_pred_bits.append(
            np.mean(
                calc_shannon_entropy(
                    merge_model.predict([xm_digits] * ensemble_size))))
        ob_pred_bits.append(
            np.mean(
                calc_shannon_entropy(
                    merge_model.predict([ob_digits] * ensemble_size))))

        # Calculating ensemble members classification entropyc_error
        print(
            "===== Calculating ensemble members classification entropy =====")

        mnist_class_bits.append(np.mean(calc_class_entropy(model_list, xtest)))
        xm_class_bits.append(np.mean(calc_class_entropy(model_list,
                                                        xm_digits)))
        ob_class_bits.append(np.mean(calc_class_entropy(model_list,
                                                        ob_digits)))

    mnist_results = {
        "c_error": mnist_c_errors,
        "pred_bits": mnist_pred_bits,
        "class_bits": mnist_class_bits
    }

    xm_results = {
        "c_error": xm_c_errors,
        "pred_bits": xm_pred_bits,
        "class_bits": xm_class_bits
    }

    ob_results = {
        "c_error": ob_c_errors,
        "pred_bits": ob_pred_bits,
        "class_bits": ob_class_bits
    }

    return mnist_results, xm_results, ob_results
Пример #34
0
def main(argv):
    parser = argparse.ArgumentParser()
    parser.add_argument('--batch-size', default=100)
    parser.add_argument('--steps-per-epoch', default=450)
    parser.add_argument('--combine-method',
                        choices=COMBINE_METHODS,
                        default='max')
    parser.add_argument('--epochs', default=200, type=int)
    parser.add_argument('--digits',
                        default=range(OUTPUT_DIM),
                        nargs='+',
                        type=list)
    parser.add_argument('workspace')

    args = parser.parse_args(argv[1:])

    init_args_path = os.path.join(args.workspace, INIT_ARGS_FILENAME)
    with open(init_args_path, 'r') as f:
        init_args = json.load(f)

    # ******************************************
    # * Save training args
    # ******************************************

    train_args_path = os.path.join(args.workspace,
                                   TRAIN_SEPARATE_ARGS_FILENAME)
    with open(train_args_path, 'w') as f:
        json.dump(vars(args), f, indent=2)

    (X_train_mnist, T_train_mnist), _ = load_mnist()

    batch_size = args.batch_size
    steps_per_epoch = args.steps_per_epoch
    epochs = args.epochs

    # ******************************************
    # * Model Specification
    # ******************************************

    input = x = Input(shape=INPUT_SHAPE)

    x = Conv2D(32,
               kernel_size=(3, 3),
               activation='relu',
               padding='same',
               data_format=DIM_ORDERING,
               input_shape=INPUT_SHAPE)(x)
    x = MaxPooling2D((2, 2), padding='same', data_format=DIM_ORDERING)(x)

    x = Conv2D(64,
               kernel_size=(3, 3),
               activation='relu',
               padding='same',
               data_format=DIM_ORDERING)(x)
    x = MaxPooling2D((2, 2), padding='same', data_format=DIM_ORDERING)(x)

    x = Conv2D(64,
               kernel_size=(3, 3),
               activation='relu',
               padding='same',
               data_format=DIM_ORDERING)(x)
    x = UpSampling2D((2, 2), data_format=DIM_ORDERING)(x)

    x = Conv2D(32,
               kernel_size=(3, 3),
               activation='relu',
               padding='same',
               data_format=DIM_ORDERING)(x)
    x = UpSampling2D((2, 2), data_format=DIM_ORDERING)(x)

    x = Conv2D(1,
               kernel_size=(3, 3),
               activation='sigmoid',
               padding='same',
               data_format=DIM_ORDERING)(x)

    for digit in args.digits:
        print 'Digit: {}'.format(digit)

        train_generator = separate_pair_generator(
            X_train_mnist,
            T_train_mnist,
            digit,
            seed=0,
            batch_size=batch_size,
            combine_method=init_args['combine_method'])

        model = Model(inputs=input, outputs=x)

        summary_str_io = StringIO()
        with redirect_stdout(summary_str_io):
            model.summary()
        summary_str = summary_str_io.getvalue()
        print summary_str
        model_summary_path = os.path.join(
            args.workspace, TRAIN_SEPARATE_MODEL_SUMMARY_FILENAME)
        with open(model_summary_path, 'w') as f:
            f.write(summary_str)

        model.compile(optimizer='adam', loss='binary_crossentropy')
        model.fit_generator(train_generator, steps_per_epoch, epochs=epochs)

        model_dir_path = os.path.join(args.workspace,
                                      TRAIN_SEPARATE_MODEL_DIRNAME)
        makedirs(model_dir_path)
        model_filename = '{}_{}.h5'.format(
            TRAIN_SEPARATE_KERAS_MODEL_FILENAME_PREFIX, digit)
        model_path = os.path.join(model_dir_path, model_filename)
        model.save(model_path)

    print 'Done!'

    return 0
Пример #35
0
        return pred_prob

    def save(self, checkpoint_dir):
        model_name = "mnist_cnn_classifier"
        if not os.path.exists(checkpoint_dir):
            os.makedirs(checkpoint_dir)
        self.saver.save(self.sess, os.path.join(checkpoint_dir, model_name), global_step=self.epochs)
    def load(self, checkpoint_dir):
        import re
        print(" [*] Reading checkpoints..")

        ckpt = tf.train.get_checkpoint_state(checkpoint_dir)
        if ckpt and ckpt.model_checkpoint_path:
            ckpt_name = os.path.basename(ckpt.model_checkpoint_path)
            self.saver.restore(self.sess, os.path.join(checkpoint_dir, ckpt_name))
            counter = int(next(re.finditer("(\d+)(?!.*\d)",ckpt_name)).group(0))
            print(' [*] Success to read {}'.format(ckpt_name))
            return True, counter
        else:
            print(' [*] Failed to find a checkpoint')
            return False, 0

if __name__ == '__main__':
    with tf.Session() as sess:
        model = mnist_cnn(sess)
        model.train()
        model.save("mnist_cnn")
        model.load("mnist_cnn")
        data, label, test_data, test_label = utils.load_mnist()
        model.test(test_data[:5000], test_label[:5000])
import numpy as np
import tensorflow as tf

from config import cfg
from utils import load_mnist
from utils import save_images
from capsNet import CapsNet


if __name__ == '__main__':
    capsNet = CapsNet(is_training=cfg.is_training)
    tf.logging.info('Graph loaded')

    teX, teY = load_mnist(cfg.dataset, cfg.is_training)
    with capsNet.graph.as_default():
        sv = tf.train.Supervisor(logdir=cfg.logdir)
        # with sv.managed_session(config=tf.ConfigProto(allow_soft_placement=True)) as sess:
        with sv.managed_session() as sess:
            sv.saver.restore(sess, tf.train.latest_checkpoint(cfg.logdir))
            tf.logging.info('Restored')

            reconstruction_err = []
            for i in range(10000 // cfg.batch_size):
                start = i * cfg.batch_size
                end = start + cfg.batch_size
                recon_imgs = sess.run(capsNet.decoded, {capsNet.X: teX[start:end]})
                orgin_imgs = np.reshape(teX[start:end], (cfg.batch_size, -1))
                squared = np.square(recon_imgs - orgin_imgs)
                reconstruction_err.append(np.mean(squared))

                if i % 5 == 0:
    def __init__(self, args, SUPERVISED=True):
        # parameters
        self.epoch = args.epoch
        self.sample_num = 100
        self.batch_size = args.batch_size
        self.save_dir = args.save_dir
        self.result_dir = args.result_dir
        self.dataset = args.dataset
        self.log_dir = args.log_dir
        self.gpu_mode = args.gpu_mode
        self.model_name = args.gan_type
        self.SUPERVISED = SUPERVISED        # if it is true, label info is directly used for code
        self.len_discrete_code = 10         # categorical distribution (i.e. label)
        self.len_continuous_code = 2        # gaussian distribution (e.g. rotation, thickness)

        # networks init
        self.G = generator(self.dataset)
        self.D = discriminator(self.dataset)
        self.G_optimizer = optim.Adam(self.G.parameters(), lr=args.lrG, betas=(args.beta1, args.beta2))
        self.D_optimizer = optim.Adam(self.D.parameters(), lr=args.lrD, betas=(args.beta1, args.beta2))
        self.info_optimizer = optim.Adam(itertools.chain(self.G.parameters(), self.D.parameters()), lr=args.lrD, betas=(args.beta1, args.beta2))

        if self.gpu_mode:
            self.G.cuda()
            self.D.cuda()
            self.BCE_loss = nn.BCELoss().cuda()
            self.CE_loss = nn.CrossEntropyLoss().cuda()
            self.MSE_loss = nn.MSELoss().cuda()
        else:
            self.BCE_loss = nn.BCELoss()
            self.CE_loss = nn.CrossEntropyLoss()
            self.MSE_loss = nn.MSELoss()

        print('---------- Networks architecture -------------')
        utils.print_network(self.G)
        utils.print_network(self.D)
        print('-----------------------------------------------')

        # load mnist
        self.data_X, self.data_Y = utils.load_mnist(args.dataset)
        self.z_dim = 62
        self.y_dim = 10

        # fixed noise & condition
        self.sample_z_ = torch.zeros((self.sample_num, self.z_dim))
        for i in range(10):
            self.sample_z_[i*self.y_dim] = torch.rand(1, self.z_dim)
            for j in range(1, self.y_dim):
                self.sample_z_[i*self.y_dim + j] = self.sample_z_[i*self.y_dim]

        temp = torch.zeros((10, 1))
        for i in range(self.y_dim):
            temp[i, 0] = i

        temp_y = torch.zeros((self.sample_num, 1))
        for i in range(10):
            temp_y[i*self.y_dim: (i+1)*self.y_dim] = temp

        self.sample_y_ = torch.zeros((self.sample_num, self.y_dim))
        self.sample_y_.scatter_(1, temp_y.type(torch.LongTensor), 1)
        self.sample_c_ = torch.zeros((self.sample_num, self.len_continuous_code))

        # manipulating two continuous code
        temp_z_ = torch.rand((1, self.z_dim))
        self.sample_z2_ = temp_z_
        for i in range(self.sample_num - 1):
            self.sample_z2_ = torch.cat([self.sample_z2_, temp_z_])

        y = np.zeros(self.sample_num, dtype=np.int64)
        y_one_hot = np.zeros((self.sample_num, self.len_discrete_code))
        y_one_hot[np.arange(self.sample_num), y] = 1
        self.sample_y2_ = torch.from_numpy(y_one_hot).type(torch.FloatTensor)

        temp_c = torch.linspace(-1, 1, 10)
        self.sample_c2_ = torch.zeros((self.sample_num, 2))
        for i in range(10):
            for j in range(10):
                self.sample_c2_[i*10+j, 0] = temp_c[i]
                self.sample_c2_[i*10+j, 1] = temp_c[j]

        if self.gpu_mode:
            self.sample_z_, self.sample_y_, self.sample_c_, self.sample_z2_, self.sample_y2_, self.sample_c2_ = \
                Variable(self.sample_z_.cuda(), volatile=True), Variable(self.sample_y_.cuda(), volatile=True), \
                Variable(self.sample_c_.cuda(), volatile=True), Variable(self.sample_z2_.cuda(), volatile=True), \
                Variable(self.sample_y2_.cuda(), volatile=True), Variable(self.sample_c2_.cuda(), volatile=True)
        else:
            self.sample_z_, self.sample_y_, self.sample_c_, self.sample_z2_, self.sample_y2_, self.sample_c2_ = \
                Variable(self.sample_z_, volatile=True), Variable(self.sample_y_, volatile=True), \
                Variable(self.sample_c_, volatile=True), Variable(self.sample_z2_, volatile=True), \
                Variable(self.sample_y2_, volatile=True), Variable(self.sample_c2_, volatile=True)
Пример #38
0


if __name__ == '__main__':
    parser = argparse.ArgumentParser(description = 'Gaussian parzen window, negative log-likelihood estimator.')
    parser.add_argument('-d', '--data_dir', default='/home/clb/dataset/mnist',  help='Directory to load mnist.')
    parser.add_argument('-g', '--gen_data_path', default='result/scgan_mnist/scgan_mnist.npy', help='Path to load generative data.')
    parser.add_argument('-l', '--limit_size', default=1000, type=int, help='The number of samples in validation.')
    parser.add_argument('-b', '--batch_size', default=100, type=int)
    parser.add_argument('-c', '--cross_val', default=10, type=int,
                            help="Number of cross valiation folds")
    parser.add_argument('--sigma_start', default=-1, type=float)
    parser.add_argument('--sigma_end', default=0., type=float)
    parser.add_argument('--file', default='cgan_mnist.txt', help='File to save mean and std of log-likelihood.')
    args = parser.parse_args()

    # load mnist
    trainX, trainY, testX, testY = utils.load_mnist(args.data_dir)
    trainX = trainX.reshape([-1, 784]).astype(np.float32)/255.
    testX = testX.reshape([-1, 784]).astype(np.float32)/255.

    x = trainX[60000-args.limit_size:]
    mu = np.load(args.gen_data_path).astype(np.float32)/255.

    sigmas = np.logspace(args.sigma_start, args.sigma_end, args.cross_val)
    sigma = cross_validate_sigma(x, mu, sigmas, args.batch_size)
    print('Using Sigma: {}'.format(sigma))
    lls = get_lls(testX, mu, sigma, args.batch_size)
    print('Negative Log-Likelihood of Test Set = {}, Std: {}'.format(lls.mean(), lls.std()/np.sqrt(testX.shape[0])))
    with open(args.file, 'w') as file:
        file.write('Negative Log-Likelihood of Test Set = {}, Std: {}\n'.format(lls.mean(), lls.std()/np.sqrt(testX.shape[0]))) 
# coding: utf-8
import numpy as np
import matplotlib.pyplot as plt
from collections import OrderedDict
from utils import img_show, load_mnist
from two_layer_net import TwoLayerNet

from optimizer import *

(x_train, y_train), (x_test, y_test) = load_mnist(normalize=True, one_hot_label=True)

optimizers = OrderedDict()
optimizers["SGD"] = SGD()
optimizers["Momentum"] = Momentum()
optimizers["AdaGrad"] = AdaGrad()
optimizers["Adam"] = Adam()


inters_num = 2000
train_size = x_train.shape[0]
batch_size = 100

markers = {"SGD": "o", "Momentum": "x", "AdaGrad": "s", "Adam": "D"}
train_loss_list = {}

for key in optimizers:
  net = TwoLayerNet(input_size=784, hidden_size=50, output_size=10)
  optimizer = optimizers[key]
  train_loss_list[key] = []
  for i in range(inters_num):
      batch_mask = np.random.choice(train_size, batch_size)
Пример #40
0
    def __init__(self, args, SUPERVISED=True):
        # parameters
        self.epoch = args.epoch
        self.sample_num = 100
        self.batch_size = args.batch_size
        self.save_dir = args.save_dir
        self.result_dir = args.result_dir
        self.dataset = args.dataset
        self.log_dir = args.log_dir
        self.gpu_mode = args.gpu_mode
        self.model_name = args.gan_type
        self.SUPERVISED = SUPERVISED  # if it is true, label info is directly used for code
        self.len_discrete_code = 10  # categorical distribution (i.e. label)
        self.len_continuous_code = 2  # gaussian distribution (e.g. rotation, thickness)

        # networks init
        self.G = generator(self.dataset)
        self.D = discriminator(self.dataset)
        self.G_optimizer = optim.Adam(self.G.parameters(),
                                      lr=args.lrG,
                                      betas=(args.beta1, args.beta2))
        self.D_optimizer = optim.Adam(self.D.parameters(),
                                      lr=args.lrD,
                                      betas=(args.beta1, args.beta2))
        self.info_optimizer = optim.Adam(itertools.chain(
            self.G.parameters(), self.D.parameters()),
                                         lr=args.lrD,
                                         betas=(args.beta1, args.beta2))

        if self.gpu_mode:
            self.G.cuda()
            self.D.cuda()
            self.BCE_loss = nn.BCELoss().cuda()
            self.CE_loss = nn.CrossEntropyLoss().cuda()
            self.MSE_loss = nn.MSELoss().cuda()
        else:
            self.BCE_loss = nn.BCELoss()
            self.CE_loss = nn.CrossEntropyLoss()
            self.MSE_loss = nn.MSELoss()

        print('---------- Networks architecture -------------')
        utils.print_network(self.G)
        utils.print_network(self.D)
        print('-----------------------------------------------')

        # load mnist
        self.data_X, self.data_Y = utils.load_mnist(args.dataset,
                                                    args.dataroot_dir)
        self.z_dim = 62
        self.y_dim = 10

        # fixed noise & condition
        self.sample_z_ = torch.zeros((self.sample_num, self.z_dim))
        for i in range(10):
            self.sample_z_[i * self.y_dim] = torch.rand(1, self.z_dim)
            for j in range(1, self.y_dim):
                self.sample_z_[i * self.y_dim + j] = self.sample_z_[i *
                                                                    self.y_dim]

        temp = torch.zeros((10, 1))
        for i in range(self.y_dim):
            temp[i, 0] = i

        temp_y = torch.zeros((self.sample_num, 1))
        for i in range(10):
            temp_y[i * self.y_dim:(i + 1) * self.y_dim] = temp

        self.sample_y_ = torch.zeros((self.sample_num, self.y_dim))
        self.sample_y_.scatter_(1, temp_y.type(torch.LongTensor), 1)
        self.sample_c_ = torch.zeros(
            (self.sample_num, self.len_continuous_code))

        # manipulating two continuous code
        temp_z_ = torch.rand((1, self.z_dim))
        self.sample_z2_ = temp_z_
        for i in range(self.sample_num - 1):
            self.sample_z2_ = torch.cat([self.sample_z2_, temp_z_])

        y = np.zeros(self.sample_num, dtype=np.int64)
        y_one_hot = np.zeros((self.sample_num, self.len_discrete_code))
        y_one_hot[np.arange(self.sample_num), y] = 1
        self.sample_y2_ = torch.from_numpy(y_one_hot).type(torch.FloatTensor)

        temp_c = torch.linspace(-1, 1, 10)
        self.sample_c2_ = torch.zeros((self.sample_num, 2))
        for i in range(10):
            for j in range(10):
                self.sample_c2_[i * 10 + j, 0] = temp_c[i]
                self.sample_c2_[i * 10 + j, 1] = temp_c[j]

        if self.gpu_mode:
            self.sample_z_, self.sample_y_, self.sample_c_, self.sample_z2_, self.sample_y2_, self.sample_c2_ = \
                Variable(self.sample_z_.cuda(), volatile=True), Variable(self.sample_y_.cuda(), volatile=True), \
                Variable(self.sample_c_.cuda(), volatile=True), Variable(self.sample_z2_.cuda(), volatile=True), \
                Variable(self.sample_y2_.cuda(), volatile=True), Variable(self.sample_c2_.cuda(), volatile=True)
        else:
            self.sample_z_, self.sample_y_, self.sample_c_, self.sample_z2_, self.sample_y2_, self.sample_c2_ = \
                Variable(self.sample_z_, volatile=True), Variable(self.sample_y_, volatile=True), \
                Variable(self.sample_c_, volatile=True), Variable(self.sample_z2_, volatile=True), \
                Variable(self.sample_y2_, volatile=True), Variable(self.sample_c2_, volatile=True)
Пример #41
0
    parser = argparse.ArgumentParser(
        description="train",
        formatter_class=argparse.ArgumentDefaultsHelpFormatter,
    )

    parser.add_argument("--batch_size", default=128, type=int)
    parser.add_argument("--pretrain_epochs", default=20, type=int)
    parser.add_argument("--train_epochs", default=200, type=int)
    parser.add_argument("--save_dir", default="saves")
    args = parser.parse_args()
    print(args)
    epochs_pre = args.pretrain_epochs
    batch_size = args.batch_size

    x, y = load_mnist()
    autoencoder = AutoEncoder().to(device)
    ae_save_path = "saves/sim_autoencoder.pth"

    if os.path.isfile(ae_save_path):
        print("Loading {}".format(ae_save_path))
        checkpoint = torch.load(ae_save_path)
        autoencoder.load_state_dict(checkpoint["state_dict"])
    else:
        print("=> no checkpoint found at '{}'".format(ae_save_path))
        checkpoint = {"epoch": 0, "best": float("inf")}
    pretrain(
        data=x,
        model=autoencoder,
        num_epochs=epochs_pre,
        savepath=ae_save_path,
Пример #42
0
#!/usr/bin/env python
import matplotlib.pyplot as plt
import theanets

from utils import load_mnist, plot_layers


train, valid, _ = load_mnist(labels=True)

N = 16

e = theanets.Experiment(
    theanets.Classifier,
    layers=(784, N * N, 10),
    train_batches=100,
)
e.run(train, valid)

plot_layers(e.network.weights)
plt.tight_layout()
plt.show()
Пример #43
0
train_sum_freq = 10
val_sum_freq = 50

'''
Set up model
'''
#To make it Distributed
device, target = device_and_target() # getting node environment
with tf.device(device): 
     global_step1 = tf.train.get_or_create_global_step()
     model = CapsNet(batch=FLAGS.batch_size, mnist=FLAGS.use_mnist, data_path=FLAGS.path_to_data,global_step=global_step1)
step1 = tf.assign_add(global_step1,1)
'''
Load the data
'''
trX, trY, num_tr_batch, valX, valY, num_val_batch = load_mnist(FLAGS.batch_size, is_training=True, 
                                                               path=FLAGS.path_to_data, mnist=FLAGS.use_mnist)

#Format Y    
Y = valY[:num_val_batch * FLAGS.batch_size].reshape((-1, 1))

'''
Run the Model

Pass in target to determine the worker
'''
with tf.train.MonitoredTrainingSession(master=target, is_chief=(FLAGS.task_index == 0)) as sess:
    train_writer = tf.summary.FileWriter('/logs/train', sess.graph)
    counter = 0
    for epoch in range(FLAGS.epochs):
        print("Training for epoch %d/%d:" % (epoch, FLAGS.epochs))
        
Пример #44
0
parser.add_argument('--epochs', type=int, default=10, metavar='N',
                    help='number of epochs to train (default: 10)')
parser.add_argument('--dynet-gpu', action='store_true', default=False,
                    help='enables DyNet CUDA training')
parser.add_argument('--dynet-gpus', type=int, default=1, metavar='N',
                    help='number of gpu devices to use')
parser.add_argument('--dynet-seed', type=int, default=None, metavar='N',
                    help='random seed (default: random inside DyNet)')
parser.add_argument('--dynet-mem', type=int, default=None, metavar='N',
                    help='allocating memory (default: default of DyNet 512MB)')
parser.add_argument('--log-interval', type=int, default=10, metavar='N',
                    help='how many batches to wait before logging training status')

args = parser.parse_args()

train_data = load_mnist('training', './data')
batch_size = args.batch_size

test_data = load_mnist('testing', './data')


def generate_batch_loader(data, batch_size):
    i = 0
    n = len(data)

    while i + batch_size <= n:
        yield np.asarray(data[i:i+batch_size])
        i += batch_size

    # if i < n:
    #     pass  # last short batch ignored
Пример #45
0
import os
import numpy as np
from collections import Counter
from utils import load_mnist

path = os.path.join(os.getcwd(), 'dataset')
train_x, train_y = load_mnist(path, 'train')
test_x, test_y = load_mnist(path, 't10k')

print('train images: ', train_x.shape[0])
print('test images: ', test_x.shape[0])


def classify(input, k, train_x, train_y):
    input = input / 255.0  # normalize
    train_x = train_x / 255.0  # normalize
    dists = []
    for i in range(train_x.shape[0]):
        dist = np.linalg.norm(train_x[i] - input)
        dists.append(dist)
    dists = np.array(dists)
    sored_idx = np.argsort(dists)
    class_list = []
    for idx in sored_idx[:k]:
        class_list.append(train_y[idx])
    counter = Counter(class_list)
    most_common = counter.most_common(1)
    for label, num in most_common:
        return label, num  # return most common label, which is the result of KNN

Пример #46
0
import theanets

from utils import load_mnist, plot_layers, plot_images

logging = climate.get_logger('mnist-rica')

climate.enable_default_logging()


class WeightInverse(theanets.Regularizer):
    def loss(self, layers, outputs):
        return sum((1 / (w * w).sum(axis=0)).sum() for l in layers
                   for w in l.params if w.ndim > 1)


(train, ), (valid, ), _ = load_mnist()

# mean-center the digits and compute a pca whitening transform.

m = train.mean(axis=0)
train -= m
valid -= m

logging.info('computing whitening transform')
vals, vecs = np.linalg.eigh(np.dot(train.T, train) / len(train))
vals = vals[::-1]
vecs = vecs[:, ::-1]

K = 197  # this retains 99% of the variance in the digit data.
vals = np.sqrt(vals[:K])
vecs = vecs[:, :K]
Пример #47
0
def test_SdA(finetune_lr=0.1, pretraining_epochs=15,
             pretrain_lr=0.001, training_epochs=1000,
             dataset='mnist.pkl.gz', batch_size=1):
    """
    Demonstrates how to train and test a stochastic denoising autoencoder.

    This is demonstrated on MNIST.

    :type learning_rate: float
    :param learning_rate: learning rate used in the finetune stage
    (factor for the stochastic gradient)

    :type pretraining_epochs: int
    :param pretraining_epochs: number of epoch to do pretraining

    :type pretrain_lr: float
    :param pretrain_lr: learning rate to be used during pre-training

    :type n_iter: int
    :param n_iter: maximal number of iterations ot run the optimizer

    :type dataset: string
    :param dataset: path the the pickled dataset

    """

    datasets = load_mnist(dataset)

    train_set_x, train_set_y = datasets[0]
    valid_set_x, valid_set_y = datasets[1]
    test_set_x, test_set_y = datasets[2]

    # compute number of minibatches for training, validation and testing
    n_train_batches = train_set_x.get_value(borrow=True).shape[0]
    n_train_batches /= batch_size

    # numpy random generator
    # start-snippet-3
    numpy_rng = numpy.random.RandomState(89677)
    print '... building the model'
    # construct the stacked denoising autoencoder class
    sda = SdA(
        numpy_rng=numpy_rng,
        n_ins=28 * 28,
        hidden_layers_sizes=[1000, 1000, 1000],
        n_outs=10
    )
    # end-snippet-3 start-snippet-4
    # PRETRAINING THE MODEL #
    print '... getting the pretraining functions'
    pretraining_fns = sda.pretraining_functions(train_set_x=train_set_x,
                                                batch_size=batch_size)

    print '... pre-training the model'
    start_time = time.clock()
    corruption_levels = [.1, .2, .3]
    for i in xrange(sda.n_layers):
        # go through pretraining epochs
        for epoch in xrange(pretraining_epochs):
            # go through the training set
            c = []
            for batch_index in xrange(n_train_batches):
                c.append(pretraining_fns[i](index=batch_index,
                         corruption=corruption_levels[i],
                         lr=pretrain_lr))
            print 'Pre-training layer %i, epoch %d, cost ' % (i, epoch),
            print numpy.mean(c)

    end_time = time.clock()

    print >> sys.stderr, ('The pretraining code for file ' +
                          os.path.split(__file__)[1] +
                          ' ran for %.2fm' % ((end_time - start_time) / 60.))
    # end-snippet-4
    # FINETUNING THE MODEL #

    # get the training, validation and testing function for the model
    print '... getting the finetuning functions'
    train_fn, validate_model, test_model = sda.build_finetune_functions(
        datasets=datasets,
        batch_size=batch_size,
        learning_rate=finetune_lr
    )

    print '... finetunning the model'
    # early-stopping parameters
    patience = 10 * n_train_batches  # look as this many examples regardless
    patience_increase = 2.  # wait this much longer when a new best is
                            # found
    improvement_threshold = 0.995  # a relative improvement of this much is
                                   # considered significant
    validation_frequency = min(n_train_batches, patience / 2)
                                  # go through this many
                                  # minibatche before checking the network
                                  # on the validation set; in this case we
                                  # check every epoch

    best_validation_loss = numpy.inf
    test_score = 0.
    start_time = time.clock()

    done_looping = False
    epoch = 0

    while (epoch < training_epochs) and (not done_looping):
        epoch = epoch + 1
        for minibatch_index in xrange(n_train_batches):
            minibatch_avg_cost = train_fn(minibatch_index)
            iter = (epoch - 1) * n_train_batches + minibatch_index

            if (iter + 1) % validation_frequency == 0:
                validation_losses = validate_model()
                this_validation_loss = numpy.mean(validation_losses)
                print('epoch %i, minibatch %i/%i, validation error %f %%' %
                      (epoch, minibatch_index + 1, n_train_batches,
                       this_validation_loss * 100.))

                # if we got the best validation score until now
                if this_validation_loss < best_validation_loss:

                    #improve patience if loss improvement is good enough
                    if (
                        this_validation_loss < best_validation_loss *
                        improvement_threshold
                    ):
                        patience = max(patience, iter * patience_increase)

                    # save best validation score and iteration number
                    best_validation_loss = this_validation_loss
                    best_iter = iter

                    # test it on the test set
                    test_losses = test_model()
                    test_score = numpy.mean(test_losses)
                    print(('     epoch %i, minibatch %i/%i, test error of '
                           'best model %f %%') %
                          (epoch, minibatch_index + 1, n_train_batches,
                           test_score * 100.))

            if patience <= iter:
                done_looping = True
                break

    end_time = time.clock()
    print(
        (
            'Optimization complete with best validation score of %f %%, '
            'on iteration %i, '
            'with test performance %f %%'
        )
        % (best_validation_loss * 100., best_iter + 1, test_score * 100.)
    )
    print >> sys.stderr, ('The training code for file ' +
                          os.path.split(__file__)[1] +
                          ' ran for %.2fm' % ((end_time - start_time) / 60.))
Пример #48
0
    transform_time = t2 - t1

    classifier = SVC(C=10)
    classifier.fit(X_train, y_train)
    return pcanet, classifier


def test(pcanet, classifier, test_set):
    images_test, y_test = test_set

    X_test = pcanet.transform(images_test)
    y_pred = classifier.predict(X_test)
    return y_pred, y_test


train_set, test_set = load_mnist()


if args.gpu >= 0:
    set_device(args.gpu)


if args.mode == "train":
    print("Training the model...")
    pcanet, classifier = train(train_set)

    if not isdir(args.out):
        os.makedirs(args.out)

    save_model(pcanet, join(args.out, "pcanet.pkl"))
    save_model(classifier, join(args.out, "classifier.pkl"))
Пример #49
0
def sgd_optimization_mnist(learning_rate=0.13, n_epochs=1000,
                           dataset='mnist.pkl.gz',
                           batch_size=600):
    """
    Demonstrate stochastic gradient descent optimization of a log-linear
    model

    This is demonstrated on MNIST.

    :type learning_rate: float
    :param learning_rate: learning rate used (factor for the stochastic
                          gradient)

    :type n_epochs: int
    :param n_epochs: maximal number of epochs to run the optimizer

    :type dataset: string
    :param dataset: the path of the MNIST dataset file from
                 http://www.iro.umontreal.ca/~lisa/deep/data/mnist/mnist.pkl.gz

    """
    datasets = load_mnist(dataset)

    train_set_x, train_set_y = datasets[0]
    valid_set_x, valid_set_y = datasets[1]
    test_set_x, test_set_y = datasets[2]

    # compute number of minibatches for training, validation and testing
    n_train_batches = train_set_x.get_value(borrow=True).shape[0] / batch_size
    n_valid_batches = valid_set_x.get_value(borrow=True).shape[0] / batch_size
    n_test_batches = test_set_x.get_value(borrow=True).shape[0] / batch_size

    ######################
    # BUILD ACTUAL MODEL #
    ######################
    print '... building the model'

    # allocate symbolic variables for the data
    index = T.lscalar()  # index to a [mini]batch

    # generate symbolic variables for input (x and y represent a
    # minibatch)
    x = T.matrix('x')  # data, presented as rasterized images
    y = T.ivector('y')  # labels, presented as 1D vector of [int] labels

    # construct the logistic regression class
    # Each MNIST image has size 28*28
    classifier = LogisticRegression(input=x, n_in=28 * 28, n_out=10)

    # the cost we minimize during training is the negative log likelihood of
    # the model in symbolic format
    cost = classifier.negative_log_likelihood(y)

    # compiling a Theano function that computes the mistakes that are made by
    # the model on a minibatch
    test_model = theano.function(
        inputs=[index],
        outputs=classifier.errors(y),
        givens={
            x: test_set_x[index * batch_size: (index + 1) * batch_size],
            y: test_set_y[index * batch_size: (index + 1) * batch_size]
        }
    )

    validate_model = theano.function(
        inputs=[index],
        outputs=classifier.errors(y),
        givens={
            x: valid_set_x[index * batch_size: (index + 1) * batch_size],
            y: valid_set_y[index * batch_size: (index + 1) * batch_size]
        }
    )

    # compute the gradient of cost with respect to theta = (W,b)
    g_W = T.grad(cost=cost, wrt=classifier.W)
    g_b = T.grad(cost=cost, wrt=classifier.b)

    # start-snippet-3
    # specify how to update the parameters of the model as a list of
    # (variable, update expression) pairs.
    updates = [(classifier.W, classifier.W - learning_rate * g_W),
               (classifier.b, classifier.b - learning_rate * g_b)]

    # compiling a Theano function `train_model` that returns the cost, but in
    # the same time updates the parameter of the model based on the rules
    # defined in `updates`
    train_model = theano.function(
        inputs=[index],
        outputs=cost,
        updates=updates,
        givens={
            x: train_set_x[index * batch_size: (index + 1) * batch_size],
            y: train_set_y[index * batch_size: (index + 1) * batch_size]
        }
    )
    # end-snippet-3

    ###############
    # TRAIN MODEL #
    ###############
    print '... training the model'
    # early-stopping parameters
    patience = 5000  # look as this many examples regardless
    patience_increase = 2  # wait this much longer when a new best is
                                  # found
    improvement_threshold = 0.995  # a relative improvement of this much is
                                  # considered significant
    validation_frequency = min(n_train_batches, patience / 2)
                                  # go through this many
                                  # minibatche before checking the network
                                  # on the validation set; in this case we
                                  # check every epoch

    best_validation_loss = numpy.inf
    test_score = 0.
    start_time = time.clock()

    done_looping = False
    epoch = 0
    while (epoch < n_epochs) and (not done_looping):
        epoch = epoch + 1
        for minibatch_index in xrange(n_train_batches):

            minibatch_avg_cost = train_model(minibatch_index)
            # iteration number
            iter = (epoch - 1) * n_train_batches + minibatch_index

            if (iter + 1) % validation_frequency == 0:
                # compute zero-one loss on validation set
                validation_losses = [validate_model(i)
                                     for i in xrange(n_valid_batches)]
                this_validation_loss = numpy.mean(validation_losses)

                print(
                    'epoch %i, minibatch %i/%i, validation error %f %%' %
                    (
                        epoch,
                        minibatch_index + 1,
                        n_train_batches,
                        this_validation_loss * 100.
                    )
                )

                # if we got the best validation score until now
                if this_validation_loss < best_validation_loss:
                    #improve patience if loss improvement is good enough
                    if this_validation_loss < best_validation_loss *  \
                       improvement_threshold:
                        patience = max(patience, iter * patience_increase)

                    best_validation_loss = this_validation_loss
                    # test it on the test set

                    test_losses = [test_model(i)
                                   for i in xrange(n_test_batches)]
                    test_score = numpy.mean(test_losses)

                    print(
                        (
                            '     epoch %i, minibatch %i/%i, test error of'
                            ' best model %f %%'
                        ) %
                        (
                            epoch,
                            minibatch_index + 1,
                            n_train_batches,
                            test_score * 100.
                        )
                    )

            if patience <= iter:
                done_looping = True
                break

    end_time = time.clock()
    print(
        (
            'Optimization complete with best validation score of %f %%,'
            'with test performance %f %%'
        )
        % (best_validation_loss * 100., test_score * 100.)
    )
    print 'The code run for %d epochs, with %f epochs/sec' % (
        epoch, 1. * epoch / (end_time - start_time))
    print >> sys.stderr, ('The code for file ' +
                          os.path.split(__file__)[1] +
                          ' ran for %.1fs' % ((end_time - start_time)))
def experiment(network_model, reshape_mode='mlp'):
    reshape_funs = {
        "conv": lambda d: d.reshape(-1, 28, 28, 1),
        "mlp": lambda d: d.reshape(-1, 784)
    }
    xtrain, ytrain, xtest, ytest = utils.load_mnist()
    reshape_fun = reshape_funs[reshape_mode]
    xtrain, xtest = reshape_fun(xtrain), reshape_fun(xtest)

    digits_data = utils.load_processed_data('combined_testing_data')
    digits_data2 = utils.load_processed_data('digits_og_and_optimal')
    taus = [13, 14, 15]

    digits = list(map(reshape_fun, [digits_data[t] for t in taus]))
    digits = list(map(utils.normalize_data, digits))
    digits_og = reshape_fun(digits_data2['lecunn'])
    digits_og = utils.normalize_data(digits_og)

    d_labels = utils.create_one_hot(digits_data['labels'].astype('uint'))
    d2_labels = utils.create_one_hot(digits_data2['labels'].astype('uint'))

    ensemble_size = 20
    epochs = 50
    trials = 10

    mnist_correct = []
    mnist_wrong = []
    digits_wrong = []
    digits_correct = []
    d2_wrong = []
    d2_correct = []

    for t in range(trials):

        inputs = []
        outputs = []
        model_list = []

        for e in range(ensemble_size):
            model = Sequential()
            model.add(
                layers.Dense(200,
                             input_dim=784,
                             kernel_initializer=inits.RandomUniform(
                                 maxval=0.5, minval=-0.5)))
            model.add(layers.Activation("relu"))
            model.add(layers.BatchNormalization())
            model.add(
                layers.Dense(200,
                             kernel_initializer=inits.RandomUniform(
                                 maxval=0.5, minval=-0.5)))
            model.add(layers.Activation("relu"))
            model.add(layers.BatchNormalization())
            model.add(
                layers.Dense(200,
                             kernel_initializer=inits.RandomUniform(
                                 maxval=0.5, minval=-0.5)))
            model.add(layers.Activation("relu"))
            model.add(layers.BatchNormalization())
            model.add(
                layers.Dense(10,
                             kernel_initializer=inits.RandomUniform(
                                 maxval=0.5, minval=-0.5)))
            model.add(layers.Activation("softmax"))

            es = clb.EarlyStopping(monitor='val_loss',
                                   patience=5,
                                   restore_best_weights=True)
            model.compile(optimizer=opt.Adam(),
                          loss="categorical_crossentropy",
                          metrics=['acc'])
            model.fit(xtrain,
                      ytrain,
                      epochs=epochs,
                      batch_size=100,
                      validation_split=(1 / 6),
                      callbacks=[es])
            model_list.append(model)

            inputs.extend(model.inputs)
            outputs.extend(model.outputs)

        merge_model = Model(inputs=inputs, outputs=layers.Average()(outputs))

        mnist_preds = merge_model.predict([xtest] * ensemble_size)
        mnist_mem_preds = np.array(
            list(map(lambda m: m.predict(xtest),
                     model_list))).transpose(1, 2, 0)
        correct, wrong = bin_entropies(mnist_preds, mnist_mem_preds, ytest)
        mnist_correct.extend(correct)
        mnist_wrong.extend(wrong)

        d2_preds = merge_model.predict([digits_og] * ensemble_size)
        d2_mempreds = np.array(
            list(map(lambda m: m.predict(digits_og),
                     model_list))).transpose(1, 2, 0)
        correct, wrong = bin_entropies(d2_preds, d2_mempreds, d2_labels)
        d2_correct.extend(correct)
        d2_wrong.extend(wrong)

        for d in digits:
            digits_preds = merge_model.predict([d] * ensemble_size)
            mempreds = np.array(list(map(lambda m: m.predict(d),
                                         model_list))).transpose(1, 2, 0)
            correct, wrong = bin_entropies(digits_preds, mempreds, d_labels)
            digits_wrong.extend(wrong)
            digits_correct.extend(correct)

        ensemble = {
            'mnist_correct': mnist_correct,
            'mnist_wrong': mnist_wrong,
            'digits_correct': digits_correct,
            'digits_wrong': digits_wrong,
            'lecunn_correct': d2_correct,
            'lecunn_wrong': d2_wrong
        }

    return ensemble
Пример #51
0
def main():
    # Training settings
    parser = argparse.ArgumentParser(description='Embedding extraction module')
    parser.add_argument('--net',
                        default='lenet5',
                        help='DNN name (default=lenet5)')
    parser.add_argument('--root',
                        default='data',
                        help='rootpath (default=data)')
    parser.add_argument('--dataset',
                        default='imagenet',
                        help='dataset (default=imagenet)')
    parser.add_argument('--tensor_folder',
                        default='tensor_pub',
                        help='tensor_folder (default=tensor_pub)')
    parser.add_argument('--layer-info',
                        default='layer_info',
                        help='layer-info (default=layer_info)')
    parser.add_argument('--gpu-id',
                        default='1',
                        type=str,
                        help='id(s) for CUDA_VISIBLE_DEVICES')
    parser.add_argument('-j',
                        '--workers',
                        default=8,
                        type=int,
                        metavar='N',
                        help='number of data loading workers (default: 8)')
    parser.add_argument('-b',
                        '--batch-size',
                        default=1,
                        type=int,
                        metavar='N',
                        help='should be 1')
    args = parser.parse_args()
    use_cuda = True
    # Define what device we are using
    print("CUDA Available: ", torch.cuda.is_available())

    root = args.root
    dataset = args.dataset
    net = args.net
    tensor_folder = args.tensor_folder
    layers, cols = utils.get_layer_info(root, dataset, net, args.layer_info)
    print(dataset)
    print(root, dataset, net)

    os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu_id

    if dataset.startswith('imagenet'):
        if net == 'resnet50':
            model = utils.load_resnet50_model(True)
        elif net == 'vgg16':
            model = utils.load_vgg_model(pretrained=True, net=net)
        else:
            model = utils.load_resnet_model(pretrained=True)

        sub_models = utils.load_imagenet_sub_models(
            utils.get_model_root(root, dataset, net), layers, net, cols)
        # sub_models = utils.load_resnet_sub_models(utils.get_model_root(root,
        # dataset, net), layers, net)
        test_loader = utils.load_imagenet_test(args.batch_size, args.workers)
        anatomy(model, sub_models, test_loader, root, dataset, tensor_folder,
                net, layers)

    else:  # cifar10, cifar100, mnist
        device = torch.device("cuda" if (
            use_cuda and torch.cuda.is_available()) else "cpu")
        nclass = 10
        if dataset == 'cifar100':
            nclass = 100
        model = utils.load_model(
            net, device, utils.get_pretrained_model(root, dataset, net),
            dataset)
        weight_models = utils.load_weight_models(
            net, device, utils.get_model_root(root, dataset, net), layers,
            cols, nclass)
        if dataset == 'mnist':
            train_loader, test_loader = utils.load_mnist(
                utils.get_root(root, dataset, 'data', net))
        elif dataset == 'cifar10':
            train_loader, test_loader = utils.load_cifar10(
                utils.get_root(root, dataset, 'data', net))
        elif dataset == 'cifar100':
            train_loader, test_loader = utils.load_cifar100(
                utils.get_root(root, dataset, 'data', net))
        else:  #default mnist
            train_loader, test_loader = utils.load_mnist(
                utils.get_root(root, dataset, 'data', net))
        anatomy(model, weight_models, test_loader, root, dataset,
                tensor_folder, net, layers)
Пример #52
0
#!/usr/bin/env python

import matplotlib.pyplot as plt
import theanets

from utils import load_mnist, plot_layers


train, valid, _ = load_mnist(labels=True)

N = 10

e = theanets.Experiment(
    theanets.Classifier,
    layers=(784, N * N, 10),
    train_batches=100,
)
e.train(train, valid)

plot_layers([e.network.find(1, 0), e.network.find(2, 0)])
plt.tight_layout()
plt.show()
Пример #53
0
def train_autoencoder():
    print('building model')
    layers = model.build_model()

    max_epochs = 5000
    batch_size = 128
    weightsfile = join('weights', 'weights_train_val.pickle')

    print('compiling theano functions for training')
    print('  encoder/decoder')
    encoder_decoder_update = theano_funcs.create_encoder_decoder_func(
        layers, apply_updates=True)
    print('  discriminator')
    discriminator_update = theano_funcs.create_discriminator_func(
        layers, apply_updates=True)
    print('  generator')
    generator_update = theano_funcs.create_generator_func(
        layers, apply_updates=True)

    print('compiling theano functions for validation')
    print('  encoder/decoder')
    encoder_decoder_func = theano_funcs.create_encoder_decoder_func(layers)
    print('  discriminator')
    discriminator_func = theano_funcs.create_discriminator_func(layers)
    print('  generator')
    generator_func = theano_funcs.create_generator_func(layers)

    print('loading data')
    X_train, y_train, X_test, y_test = utils.load_mnist()

    try:
        for epoch in range(1, max_epochs + 1):
            print('epoch %d' % (epoch))

            # compute loss on training data and apply gradient updates
            train_reconstruction_losses = []
            train_discriminative_losses = []
            train_generative_losses = []
            for train_idx in get_batch_idx(X_train.shape[0], batch_size):
                X_train_batch = X_train[train_idx]
                # 1.) update the encoder/decoder to min. reconstruction loss
                train_batch_reconstruction_loss =\
                    encoder_decoder_update(X_train_batch)

                # sample from p(z)
                pz_train_batch = np.random.uniform(
                    low=-2, high=2,
                    size=(X_train_batch.shape[0], 2)).astype(
                        np.float32)

                # 2.) update discriminator to separate q(z|x) from p(z)
                train_batch_discriminative_loss =\
                    discriminator_update(X_train_batch, pz_train_batch)

                # 3.)  update generator to output q(z|x) that mimic p(z)
                train_batch_generative_loss = generator_update(X_train_batch)

                train_reconstruction_losses.append(
                    train_batch_reconstruction_loss)
                train_discriminative_losses.append(
                    train_batch_discriminative_loss)
                train_generative_losses.append(
                    train_batch_generative_loss)

            # average over minibatches
            train_reconstruction_losses_mean = np.mean(
                train_reconstruction_losses)
            train_discriminative_losses_mean = np.mean(
                train_discriminative_losses)
            train_generative_losses_mean = np.mean(
                train_generative_losses)

            print('  train: rec = %.6f, dis = %.6f, gen = %.6f' % (
                train_reconstruction_losses_mean,
                train_discriminative_losses_mean,
                train_generative_losses_mean,
            ))

            # compute loss on test data
            test_reconstruction_losses = []
            test_discriminative_losses = []
            test_generative_losses = []
            for test_idx in get_batch_idx(X_test.shape[0], batch_size):
                X_test_batch = X_test[test_idx]
                test_batch_reconstruction_loss =\
                    encoder_decoder_func(X_test_batch)

                # sample from p(z)
                pz_test_batch = np.random.uniform(
                    low=-2, high=2,
                    size=(X_test.shape[0], 2)).astype(
                        np.float32)

                test_batch_discriminative_loss =\
                    discriminator_func(X_test_batch, pz_test_batch)

                test_batch_generative_loss = generator_func(X_test_batch)

                test_reconstruction_losses.append(
                    test_batch_reconstruction_loss)
                test_discriminative_losses.append(
                    test_batch_discriminative_loss)
                test_generative_losses.append(
                    test_batch_generative_loss)

            test_reconstruction_losses_mean = np.mean(
                test_reconstruction_losses)
            test_discriminative_losses_mean = np.mean(
                test_discriminative_losses)
            test_generative_losses_mean = np.mean(
                test_generative_losses)

            print('  test: rec = %.6f, dis = %.6f, gen = %.6f' % (
                test_reconstruction_losses_mean,
                test_discriminative_losses_mean,
                test_generative_losses_mean,
            ))

    except KeyboardInterrupt:
        print('caught ctrl-c, stopped training')
        weights = get_all_param_values([
            layers['l_decoder_out'],
            layers['l_discriminator_out'],
        ])
        print('saving weights to %s' % (weightsfile))
        model.save_weights(weights, weightsfile)
Пример #54
0
def main():
    """The main function
    Entry point.
    """
    global args

    # Setting the hyper parameters
    parser = argparse.ArgumentParser(description='Example of Capsule Network')
    parser.add_argument('--epochs', type=int, default=10,
                        help='number of training epochs. default=10')
    parser.add_argument('--lr', type=float, default=0.01,
                        help='learning rate. default=0.01')
    parser.add_argument('--batch-size', type=int, default=128,
                        help='training batch size. default=128')
    parser.add_argument('--test-batch-size', type=int,
                        default=128, help='testing batch size. default=128')
    parser.add_argument('--log-interval', type=int, default=10,
                        help='how many batches to wait before logging training status. default=10')
    parser.add_argument('--no-cuda', action='store_true', default=False,
                        help='disables CUDA training. default=false')
    parser.add_argument('--threads', type=int, default=4,
                        help='number of threads for data loader to use. default=4')
    parser.add_argument('--seed', type=int, default=42,
                        help='random seed for training. default=42')
    parser.add_argument('--num-conv-out-channel', type=int, default=256,
                        help='number of channels produced by the convolution. default=256')
    parser.add_argument('--num-conv-in-channel', type=int, default=1,
                        help='number of input channels to the convolution. default=1')
    parser.add_argument('--num-primary-unit', type=int, default=8,
                        help='number of primary unit. default=8')
    parser.add_argument('--primary-unit-size', type=int,
                        default=1152, help='primary unit size is 32 * 6 * 6. default=1152')
    parser.add_argument('--num-classes', type=int, default=10,
                        help='number of digit classes. 1 unit for one MNIST digit. default=10')
    parser.add_argument('--output-unit-size', type=int,
                        default=16, help='output unit size. default=16')
    parser.add_argument('--num-routing', type=int,
                        default=3, help='number of routing iteration. default=3')
    parser.add_argument('--use-reconstruction-loss', type=utils.str2bool, nargs='?', default=True,
                        help='use an additional reconstruction loss. default=True')
    parser.add_argument('--regularization-scale', type=float, default=0.0005,
                        help='regularization coefficient for reconstruction loss. default=0.0005')

    args = parser.parse_args()

    print(args)

    # Check GPU or CUDA is available
    args.cuda = not args.no_cuda and torch.cuda.is_available()

    # Get reproducible results by manually seed the random number generator
    torch.manual_seed(args.seed)
    if args.cuda:
        torch.cuda.manual_seed(args.seed)

    # Load data
    train_loader, test_loader = utils.load_mnist(args)

    # Build Capsule Network
    print('===> Building model')
    model = Net(num_conv_in_channel=args.num_conv_in_channel,
                num_conv_out_channel=args.num_conv_out_channel,
                num_primary_unit=args.num_primary_unit,
                primary_unit_size=args.primary_unit_size,
                num_classes=args.num_classes,
                output_unit_size=args.output_unit_size,
                num_routing=args.num_routing,
                use_reconstruction_loss=args.use_reconstruction_loss,
                regularization_scale=args.regularization_scale,
                cuda_enabled=args.cuda)

    if args.cuda:
        print('Utilize GPUs for computation')
        print('Number of GPU available', torch.cuda.device_count())
        model.cuda()
        cudnn.benchmark = True
        model = torch.nn.DataParallel(model)

    # Print the model architecture and parameters
    print('Model architectures:\n{}\n'.format(model))

    print('Parameters and size:')
    for name, param in model.named_parameters():
        print('{}: {}'.format(name, list(param.size())))

    # CapsNet has 8.2M parameters and 6.8M parameters without the reconstruction subnet.
    num_params = sum([param.nelement() for param in model.parameters()])

    # The coupling coefficients c_ij are not included in the parameter list,
    # we need to add them manually, which is 1152 * 10 = 11520.
    print('\nTotal number of parameters: {}\n'.format(num_params + 11520))

    # Optimizer
    optimizer = optim.Adam(model.parameters(), lr=args.lr)

    # Make model checkpoint directory
    if not os.path.exists('results/trained_model'):
        os.makedirs('results/trained_model')

    # Set the logger
    writer = SummaryWriter()

    # Train and test
    for epoch in range(1, args.epochs + 1):
        train(model, train_loader, optimizer, epoch, writer)
        test(model, test_loader, len(train_loader), epoch, writer)

        # Save model checkpoint
        utils.checkpoint({
            'epoch': epoch + 1,
            'state_dict': model.state_dict(),
            'optimizer': optimizer.state_dict()
        }, epoch)

    writer.close()
print('GPU: {}'.format(args.gpu))
print('# dim z: {}'.format(args.dimz))
print('# Minibatch-size: {}'.format(args.batchsize))
print('# epoch: {}'.format(args.epoch))

try:
    os.mkdir(args.model_dir)
except:
    pass

try:
    os.mkdir(args.visualization_dir)
except:
    pass

x_train, x_test, y_train, y_test = utils.load_mnist()
N = len(x_train)

model = AAE(784, n_z, hidden_units_enc=(1000, 1000, 500), hidden_units_dec=(500,1000,1000))
dis = Discriminator(n_z+10)

use_gpu = args.gpu >= 0
if use_gpu:
    cuda.get_device(args.gpu).use()
    model.to_gpu()
    dis.to_gpu()

xp = np if args.gpu < 0 else cuda.cupy

optimizer_dis = optimizers.Adam(alpha=0.0002, beta1=0.5)
optimizer_aae = optimizers.Adam(alpha=0.0002, beta1=0.5)
Пример #56
0
    def __init__(self, args):
        # parameters
        self.epoch = args.epoch
        self.sample_num = 100
        self.batch_size = args.batch_size
        self.save_dir = args.save_dir
        self.result_dir = args.result_dir
        self.dataset = args.dataset
        self.log_dir = args.log_dir
        self.gpu_mode = args.gpu_mode
        self.model_name = args.gan_type

        # networks init
        self.G = generator(self.dataset)
        self.D = discriminator(self.dataset)
        self.G_optimizer = optim.Adam(self.G.parameters(),
                                      lr=args.lrG,
                                      betas=(args.beta1, args.beta2))
        self.D_optimizer = optim.Adam(self.D.parameters(),
                                      lr=args.lrD,
                                      betas=(args.beta1, args.beta2))

        if self.gpu_mode:
            self.G.cuda()
            self.D.cuda()
            self.BCE_loss = nn.BCELoss().cuda()
        else:
            self.BCE_loss = nn.BCELoss()

        print('---------- Networks architecture -------------')
        utils.print_network(self.G)
        utils.print_network(self.D)
        print('-----------------------------------------------')

        # load mnist
        self.data_X, self.data_Y = utils.load_mnist(args.dataset,
                                                    args.dataroot_dir)
        self.z_dim = 62
        self.y_dim = 10

        # fixed noise & condition
        self.sample_z_ = torch.zeros((self.sample_num, self.z_dim))
        for i in range(10):
            self.sample_z_[i * self.y_dim] = torch.rand(1, self.z_dim)
            for j in range(1, self.y_dim):
                self.sample_z_[i * self.y_dim + j] = self.sample_z_[i *
                                                                    self.y_dim]

        temp = torch.zeros((10, 1))
        for i in range(self.y_dim):
            temp[i, 0] = i

        temp_y = torch.zeros((self.sample_num, 1))
        for i in range(10):
            temp_y[i * self.y_dim:(i + 1) * self.y_dim] = temp

        self.sample_y_ = torch.zeros((self.sample_num, self.y_dim))
        self.sample_y_.scatter_(1, temp_y.type(torch.LongTensor), 1)
        if self.gpu_mode:
            self.sample_z_, self.sample_y_ = Variable(
                self.sample_z_.cuda(),
                volatile=True), Variable(self.sample_y_.cuda(), volatile=True)
        else:
            self.sample_z_, self.sample_y_ = Variable(self.sample_z_,
                                                      volatile=True), Variable(
                                                          self.sample_y_,
                                                          volatile=True)
#!/usr/bin/env python

import matplotlib.pyplot as plt
import theanets

from utils import load_mnist, plot_layers, plot_images


train, valid, _ = load_mnist()

e = theanets.Experiment(
    theanets.Autoencoder,
    layers=(784, 256, 100, 64, ('tied', 100), ('tied', 256), ('tied', 784)),
)
e.train(train, valid,
        algorithm='layerwise',
        patience=1,
        min_improvement=0.05,
        train_batches=100)
e.train(train, valid, min_improvment=0.01, train_batches=100)

plot_layers([e.network.find(i, 'w') for i in (1, 2, 3)], tied_weights=True)
plt.tight_layout()
plt.show()

valid = valid[:16*16]
plot_images(valid, 121, 'Sample data')
plot_images(e.network.predict(valid), 122, 'Reconstructed data')
plt.tight_layout()
plt.show()
Пример #58
0
        d2_hist.append(d_loss2)
        g_hist.append(g_loss)
        # evaluate
        if (i+1) % (batch_per_epoch * 1) == 0:
            log_performance(i, g_model, latent_dim)
    # plot
    plot_history(d1_hist, d2_hist, g_hist)



# EXAMPLE

latent_dim = 100

# discriminator model
discriminator = build_discriminator(in_shape=(28, 28, 1))

# generator model
generator = build_generator(latent_dim=latent_dim)

# gan model
gan_model = build_gan(generator, discriminator)

# image dataset
dataset = load_mnist()
print(dataset.shape)

# train

train(generator, discriminator, gan_model, dataset, latent_dim)
Пример #59
0
import numpy as np
import tensorflow as tf

from config import cfg
from utils import load_mnist
from utils import save_images
from capsNet import CapsNet

if __name__ == '__main__':
    capsNet = CapsNet(is_training=cfg.is_training)
    tf.logging.info('Graph loaded')

    teX, teY = load_mnist(cfg.dataset, cfg.is_training)
    with capsNet.graph.as_default():
        sv = tf.train.Supervisor(logdir=cfg.logdir)
        with sv.managed_session() as sess:
            sv.saver.restore(sess, tf.train.latest_checkpoint(cfg.logdir))
            tf.logging.info('Restored')

            reconstruction_err = []
            for i in range(10000 // cfg.batch_size):
                start = i * cfg.batch_size
                end = start + cfg.batch_size
                recon_imgs = sess.run(capsNet.decoded,
                                      {capsNet.X: teX[start:end]})
                orgin_imgs = np.reshape(teX[start:end], (cfg.batch_size, -1))
                squared = np.square(recon_imgs - orgin_imgs)
                reconstruction_err.append(np.mean(squared))

                if i % 5 == 0:
                    imgs = np.reshape(recon_imgs, (cfg.batch_size, 28, 28, 1))
Пример #60
0
import matplotlib.pyplot as plt
from convnet import ConvoNet
from trainer import Trainer
from utils import img_show, load_mnist


import sys, os
sys.path.append(os.getcwd()+'\\books\\dlfs-orig\\')
import common.util as book_util
import layers as book_layers
import dataset.mnist as book_mnist
import ch07.simple_convnet as bool_convnet


#(x_train, t_train), (x_test, t_test) = book_mnist.load_mnist(flatten=False)
(x_train, t_train), (x_test, t_test) = load_mnist()
x_train = x_train.reshape(x_train.shape[0],1,x_train.shape[1],x_train.shape[1])
x_test = x_test.reshape(x_test.shape[0],1,x_test.shape[1],x_test.shape[1])

# 处理花费时间较长的情况下减少数据 
x_train, t_train = x_train[:5000], t_train[:5000]
x_test, t_test = x_test[:1000], t_test[:1000]

max_epochs = 20
'''
network = bool_convnet.SimpleConvNet(input_dim=(1,28,28), 
                        conv_param = {'filter_num': 30, 'filter_size': 5, 'pad': 0, 'stride': 1},
                        hidden_size=100, output_size=10, weight_init_std=0.01)
'''
network = ConvoNet(input_shape=(1,28,28), 
                        conv_param = {'filter_num': 30, 'filter_size': 5, 'pad': 0, 'stride': 1},